Study creates tool to track real-time chemical changes in brain

July 16, 2012

Mayo Clinic researchers have found a novel way to monitor real-time chemical changes in the brains of patients undergoing deep brain stimulation (DBS). The groundbreaking insight will help physicians more effectively use DBS to treat brain disorders such as Parkinson's disease, depression and Tourette syndrome. The findings are published in the journal Mayo Clinic Proceedings.

Journalists: For multimedia resources including video of a tremor patient undergoing DBS, visit the Mayo Clinic News Network.

Researchers hope to use the discovery to create a DBS system that can instantly respond to in the brain. Parkinson's, and depression all involve a surplus or deficiency of neurochemicals in the brain. The idea is to monitor those neurochemicals and adjust them to appropriate levels.

"We can learn what neurochemicals can be released by DBS, neurochemical stimulation, or other stimulation. We can basically learn how the brain works," says author Su-Youne Chang, Ph.D., of the Mayo Clinic Neurosurgery Department. As researchers better understand how the brain works, they can predict changes, and respond before those changes disrupt brain functioning.

Researchers observed the real-time changes of the neurotransmitter in the brains of tremor patients undergoing deep brain stimulation. Neurotransmitters such as and serotonin are chemicals that transmit signals from a neuron to a across a synapse.

The team used fast scan cyclic voltammetry (FSCV) to quantify concentrations of adenosine released in patients during . The data was recorded using Wireless Instantaneous Neurotransmitter Concentration Sensing, a small wireless neurochemical sensor implanted in the patient's brain. The sensor, combined with FSCV, scans for the neurotransmitter and translates that information onto a laptop in the operating room. The sensor has previously identified neurotransmitters serotonin and dopamine in tests in brain tissue. This was the first time researchers used this technique in patients.

Tremors are a visual cue that the technique is working; researchers suspect adenosine plays a role in reducing tremors.

Researchers also hope to learn more about conditions without such external manifestations.

"We can't watch pain as we do tremors," says Kendall Lee, M.D., Ph.D., a Mayo Clinic neurosurgeon. "What is exciting about this electrochemical feedback is that we can monitor the brain without external feedback. So now, we can monitor neurochemicals in the brain and learn about brain processes like pain."

DBS has been used successfully worldwide to treat patients with tremors. However, physicians do not fully understand why DBS works in patients. They know that when DBS electrodes are inserted before electrical stimulation, there is an immediate tremor reduction. Known as the microthalamotomy effect, it is reported in up to 53 percent of patients and known to last as long as a year.

Researchers hope to use the study findings to create a self-contained "smart" DBS system.

"With the stimulator and detection, we can create algorithms and then raise neurotransmitters to a specified level," says Kevin Bennet, a Mayo Clinic engineer who helped create the system. "We can raise these chemicals to appropriate levels, rising and falling with each person throughout their life. Within milliseconds, we can measure, calculate and respond. From the patient's perspective, this would be essentially instantaneous."

Explore further: Most patients stop drugs for essential tremor after deep brain stimulation surgery

Related Stories

Recommended for you

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Neurons encoding hand shapes identified in human brain

November 23, 2015

Neural prosthetic devices, which include small electrode arrays implanted in the brain, can allow paralyzed patients to control the movement of a robotic limb, whether that limb is attached to the individual or not. In May ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.

Neuroscientists reveal how the brain can enhance connections

November 18, 2015

When the brain forms memories or learns a new task, it encodes the new information by tuning connections between neurons. MIT neuroscientists have discovered a novel mechanism that contributes to the strengthening of these ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.