Protective bacteria in the infant gut have resourceful way of helping babies break down breast milk

August 13, 2012 by Danielle Gutierrez

A research team at the University of California, Davis, has found that important and resourceful bacteria in the baby microbiome can ferret out nourishment from a previously unknown source, possibly helping at-risk infants break down components of breast milk.

Breast milk is amazingly intricate, providing all of the necessary to sustain and strengthen infants in the first months of life. Moreover, this of nutrition provides protection from infections, allergies and many other illnesses.

Breast milk also promotes the growth of protective bacteria in an infant's intestine. Because breast milk contains glycans (complex sugars) that infants cannot breakdown, it promotes the growth a specific type of bacteria, called bifidobacteria, that can process these glycans. While it is known that bifidobacteria avail themselves of the free glycans in breast milk, it was not known whether these bacteria could also obtain glycans that were linked to proteins. Such proteins are called glycoproteins, and they are abundant in breast milk.

The research team led by David A. Mills at the UC-Davis investigated the ability of bifidobacteria to remove glycans from milk glycoproteins. Their work was recently published in the journal Molecular & Cellular Proteomics.

Mills' group found that specific strains of bifidobacteria possessed enzymes capable of removing glycan groups from glycoproteins, enabling them to use these glycans as an additional food source. Surprisingly, one of the enzymes, EndoBI-1, was able to remove any type of N-linked glycan (glycans attached to proteins by the amino acid asparagine). This is unique among enzymes of this type and may provide a growth advantage for bifidobacteria in the infant because the glycoproteins in have complex glycans attached.

Mills explains that the ability of EndBI-1 to remove a variety of complex N-linked glycans combined with its unusual heat stability make "this potentially a very useful tool in both food processing and proteomics/pharmaceutical research."

The team's work suggests that bifidobacteria do not primarily feed on the glycans from milk glycoproteins. However, the study did show that under the proper conditions bidfidobacteria can grow when -linked glycans are the only energy source.

"One obvious goal of this research is to find ways to translate the benefits provided by milk and to at risk populations such as premature infants, malnourished children, among many others," Mills says.

Explore further: New evidence on benefits of breast feeding

More information: "Endo-β-N-acetylglucosaminidases from infant-gut associated bifidobacteria release complex N-glycans from human milk glycoproteins" by Daniel Garrido, Charles Nwosu, Santiago Ruiz-Moyano, Danielle Aldredge, J. Bruce German, Carlito B. Lebrilla and David A. Mills.

Related Stories

New evidence on benefits of breast feeding

August 11, 2008

Researchers in Switzerland and Australia are reporting identification of proteins in human breast-milk — not present in cow's milk — that may fight disease by helping remove bacteria, viruses and other dangerous pathogen's ...

Carbohydrate acts as tumor suppressor

July 6, 2009

Scientists at Burnham Institute for Medical Research (Burnham) have discovered that specialized complex sugar molecules (glycans) that anchor cells into place act as tumor suppressors in breast and prostate cancers. These ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.