Researchers and colleagues identify PHF20, a regulator of gene P53

Researchers at Moffitt Cancer Center and colleagues have identified PHF20, a novel transcriptional factor, and clarified its role in maintaining the stability and transcription of p53, a gene that allows for both normal cell growth and tumor suppression. PHF20, the researchers found, plays a previously unknown and unique role in regulating p53.

When p53 is activated, it can mend and eliminate by binding to DNA. How p53 maintains its basal level and becomes activated remain elusive, but identifying transcription factor PHF20 and understanding its interaction with p53 and its induction of stability and transcription has provided a clue.

Results of their research appeared in a recent issue of Nature Structural & Molecular Biology and also in The Journal of Biological Chemistry.

"When a cell undergoes alterations that predispose it to become cancerous, p53 is activated to either mend the DNA damage or eliminate the affected cells, thereby preventing the development of tumors," said Jin Q. Cheng, Ph.D., M.D., a senior member of the Molecular Oncology Department and Molecular Oncology and Drug Discovery Program at Moffitt. "A number of mechanisms normally keep a regulatory strong check on p53 and allow for rapid activation. Still much is unknown about the mechanism of p53 regulation."

After identifying PHF20 as a novel transcriptional factor, the researchers set out in subsequent studies to probe the function of human PHF20 and its effect on p53. They found that PHF20 not only transcriptionally induces p53 but also directly interacts with and stabilizes p53. Akt negatively regulates these processes by interaction and phosphorylation of PHF20.

To determine whether the absence of PHF20 might regulate stress-induced p53 expression, the researchers "knocked down" PHF20. In doing so, they demonstrated that in the absence of PHF20, p53 was reduced. These findings established the role of PHF20 as a key regulator of p53 and additional link between Akt and p53.

According to Cheng, the identification of PHF20 as a regulator of p53 is significant because PHF20 "participates in simultaneous multiple interactions with other proteins and DNA" and serves to stabilize and induce p53.

"Regulation of p53 is critical to allow both normal cell growth and ," explained Cheng. "However, further investigation is required to understand PHF20 tumor suppressor function and its possible involvement in human malignancy."

Related Stories

Cancer is a p53 protein aggregation disease

Mar 29, 2011

Protein aggregation, generally associated with Alzheimer's and mad cow disease, turns out to play a significant role in cancer. In a paper published in Nature Chemical Biology, Frederic Rousseau and Joost Schymkowitz of VIB ...

Recommended for you

Pepper and halt: Spicy chemical may inhibit gut tumors

3 hours ago

Researchers at the University of California, San Diego School of Medicine report that dietary capsaicin – the active ingredient in chili peppers – produces chronic activation of a receptor on cells lining ...

Expressive writing may help breast cancer survivors

4 hours ago

Writing down fears, emotions and the benefits of a cancer diagnosis may improve health outcomes for Asian-American breast cancer survivors, according to a study conducted by a researcher at the University of Houston (UH).

Taking the guesswork out of cancer therapy

10 hours ago

Researchers and doctors at the Institute of Bioengineering and Nanotechnology (IBN), Singapore General Hospital (SGH) and National Cancer Centre Singapore (NCCS) have co-developed the first molecular test ...

Brain tumour cells found circulating in blood

11 hours ago

(Medical Xpress)—German scientists have discovered rogue brain tumour cells in patient blood samples, challenging the idea that this type of cancer doesn't generally spread beyond the brain.

International charge on new radiation treatment for cancer

12 hours ago

(Medical Xpress)—Imagine a targeted radiation therapy for cancer that could pinpoint and blast away tumors more effectively than traditional methods, with fewer side effects and less damage to surrounding tissues and organs.

User comments