Danish scientists solve old blood mystery

August 31, 2012

Scientists at the research centre MEMBRANES at Aarhus University, Denmark, have completed an old puzzle, which since the 60s from many sides has been regarded as impossible to complete. The challenge was to solve the structure of the protecting protein complex that forms when haemoglobin is released from red cells and becomes toxic. This toxic release of haemoglobin occurs in many diseases affecting red cell stability, e.g. malaria.

Technically, the most important finding in this report in Nature is a high-resolution three-dimensional mapping of the so-called 'haptoglobin-haemoglobin complex'.

"After many failing experiments, our breakthrough came when we gave up using human material and went to the local slaughterhouse to purchase pig blood. Not a particular high-technological approach, but this transition from studying to blood from a species with close homology had magic effects. After running into dead ends for two years and trying out the most complex gene-technological ways to produce the right material, it suddenly worked", says Søren Kragh Moestrup, the head of the research group at Department of Biomedicine.

The discovery provides new essential information on haemoglobin that makes up most of the red . Haemoglobin is an essential component for transport of oxygen, but it becomes toxic with potential damaging effects on tissues, in particular the kidneys, when it is released from the red cells. An excessive release can occur in many diseases, such as and other infections.

However, the body has a sophisticated defence system. The first line defence is carried out by the haptoglobin, which captures haemoglobin and gates it to a receptor that engulfs the haemoglobin-haptoglobin complex. This function of the receptor named CD163 was originally discovered by the same group.

"We have now shown how this unique complex forms by generation of a detailed 3-dimensional map of each atom. This shows for the first time how the complex is formed and explains the tight protein association", says PhD Christian Brix Folsted Andersen. He has together with Master's student Morten Torvund-Jensen been an essential driving force in the project.

The results have also led to an unexpected discovery of a novel type of protein structure and a new patent submission on exploitation of the discovery for use in generation of a new type of synthetic proteins to be used in therapy and diagnostics.

Explore further: Threshold hemoglobin and mortality in people with stable coronary disease

More information: "Structure of the haptoglobin-haemoglobin complex", Nature.

Related Stories

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.