Earphones 'potentially as dangerous as noise from jet engines,' according to new study

August 29, 2012
This is Dr. Martine Hamann. Credit: University of Leicester

Turning the volume up too high on your headphones can damage the coating of nerve cells, leading to temporary deafness; scientists from the University of Leicester have shown for the first time.

Earphones or headphones on personal music players can reach noise levels similar to those of , the researchers said.

Noises louder than 110 decibels are known to cause such as temporary deafness and tinnitus (ringing in the ears), but the University of Leicester study is the first time the underlying cell damage has been observed.

The study has been published in the .

University of Leicester researcher Dr Martine Hamann of the Department of Cell Physiology and Pharmacology, who led the study, said:

"The research allows us to understand the pathway from exposure to loud noises to hearing loss. Dissecting the underlying this condition is likely to bring a very significant healthcare benefit to a wide population. The work will help prevention as well as progression into finding appropriate cures for hearing loss."

Nerve cells that carry from the ears to the brain have a coating called the , which helps the electrical signals travel along the cell. Exposure to loud noises - i.e. noise over 110 decibels - can strip the cells of this coating, disrupting the electrical signals. This means the nerves can no longer efficiently transmit information from the ears to the brain.

However, the coating surrounding the nerve cells can reform, letting the cells function again as normal. This means hearing loss can be temporary, and full hearing can return, the researchers said.

Dr Hamann explained: "We now understand why hearing loss can be reversible in certain cases. We showed that the sheath around the auditory nerve is lost in about half of the cells we looked at, a bit like stripping the electrical cable linking an amplifier to the loudspeaker. The effect is reversible and after three months, hearing has recovered and so has the sheath around the ."

The findings are part of ongoing research into the effects of loud noises on a part of the brain called the dorsal cochlear nucleus, the relay that carries signals from in the ear to the parts of the brain that decode and make sense of sounds. The team has already shown that damage to cells in this area can cause tinnitus - the sensation of 'phantom sounds' such as buzzing or ringing.

Explore further: Know the types of hearing loss to find the right treatment

More information: Mechanisms contributing to central excitability changes during hearing loss. Pilati N, Ison MJ, Barker M, Mulheran M, Large CH, Forsythe ID, Matthias J, Hamann M. Proc Natl Acad Sci. 2012 May 22;109(21):8292-7. Epub 2012 May 7

Related Stories

Tinnitus discovery could lead to new ways to stop the ringing

September 12, 2011

Neuroscientists at the University of California, Berkeley, are offering hope to the 10 percent of the population who suffer from tinnitus – a constant, often high-pitched ringing or buzzing in the ears that can be annoying ...

Recommended for you

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.