Fragile X and Down syndromes share signalling pathway for intellectual disability

Healthy dendritic spines on the surface of nerve cells are essential for intellectual ability Credit: Uta Mackensen, EMBO

Intellectual disability due to Fragile X and Down syndromes involves similar molecular pathways report researchers in The EMBO Journal. The two disorders share disturbances in the molecular events that regulate the way nerve cells develop dendritic spines, the small extensions found on the surface of nerve cells that are crucial for communication in the brain.

"We have shown for the first time that some of the proteins altered in Fragile X and Down syndromes are common molecular triggers of intellectual disability in both disorders," said Kyung-Tai Min, one of the lead authors of the study and a professor at Indiana University and the Ulsan National Institute of Science and Technology in Korea. "Specifically, two proteins interact with each other in a way that limits the formation of spines or protrusions on the surface of dendrites." He added: "These outgrowths of the cell are essential for the formation of new contacts with other and for the successful transmission of . When the spines are impaired, information transfer is impeded and mental retardation takes hold."

Intellectual disability is a developmental brain disorder that leads to impaired cognitive performance and mental retardation. Two of the most prevalent genetic causes of intellectual disability in humans are Fragile X and Down syndromes. Fragile X syndrome arises from a single that prevents the synthesis of a protein required for neural development (Fragile X mental retardation protein). The presence of all or a part of a third copy of in cells causes Down syndrome. Although both syndromes arise due to these fundamental genetic differences, the researchers identified a shared molecular pathway in mice that leads to intellectual disability for both disorders.

The mice that were used in the experiments are model systems for the study of and Down syndrome. Down syndrome mice have difficulties with memory and brain function, and the formation of the heart is often compromised, symptoms that are also observed in humans with Down syndrome. Both model systems are very useful to scientists looking to dissect the molecular events that occur as the disorders take hold.

The scientists revealed that the Down syndrome critical region 1 protein (DSCR1) interacts with Fragile X mental retardation protein (FMRP) to regulate dendritic spine formation and local protein synthesis. By using specific antibodies that bind to the proteins as well as fluorescent labeling techniques they showed that DSCR1 specifically interacts with the phosphorylated form of FMRP. The overlapping of intellectual disability in both genetic disorders suggest that a common therapeutic approach might be feasible for both syndromes.

Min remarked: "We believe these experiments provide an important step forward in understanding the multiple roles of DSCR1 in neurons and in identifying a molecular interaction that is closely linked to for both syndromes."

DSCR1 interacts with FMRP and is required for spine morphogenesis and local protein synthesis.

More information: Wei Wang, John Z. Zhu, Karen T. Chang, Kyung-Tai Min, doi:10.1038/emboj.2012.190

add to favorites email to friend print save as pdf

Related Stories

Measuring intellectual disability

Jun 24, 2009

Researchers from the University of California, Davis have developed a specific and quantitative means of measuring levels of the fragile X mental retardation 1 (FMR1) protein (FMRP), which is mutated in fragile X syndrome. ...

New clue found for Fragile X syndrome-epilepsy link

Apr 12, 2011

Individuals with fragile X syndrome, the most common inherited form of intellectual disability, often develop epilepsy, but so far the underlying causes are unknown. Researchers have now discovered a potential ...

Recommended for you

Science of romantic relationships includes gene factor

10 hours ago

(Medical Xpress)—Adolescents worry about passing tests, winning games, lost phones, fractured bones—and whether or not they will ever really fall in love. Three Chinese researchers have focused on that ...

Stress reaction may be in your dad's DNA, study finds

Nov 21, 2014

Stress in this generation could mean resilience in the next, a new study suggests. Male mice subjected to unpredictable stressors produced offspring that showed more flexible coping strategies when under ...

More genetic clues found in a severe food allergy

Nov 21, 2014

Scientists have identified four new genes associated with the severe food allergy eosinophilic esophagitis (EoE). Because the genes appear to have roles in other allergic diseases and in inflammation, the ...

Brain-dwelling worm in UK man's head sequenced

Nov 20, 2014

For the first time, the genome of a rarely seen tapeworm has been sequenced. The genetic information of this invasive parasite, which lived for four years in a UK resident's brain, offers new opportunities ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.