Genetic clues for type 2 diabetes

The two studies identified 53 loci (regions on the chromosome where genes are located) that are linked to glycemic traits and type 2 diabetes. The research could help scientists develop a tool to detect the risk of developing type 2 diabetes. Image: fpm/iStockphoto

Busselton residents and researchers from The University of Western Australia have contributed to a worldwide scientific collaboration that has identified new genetic links in the quest to map the biological pathways that cause diabetes.

In two papers published online today in , the researchers have identified a substantial number of new loci (the specific place on a chromosome where a gene is located) linked with glycemic traits and (T2D) that have not been described in previous research.

Diabetes is a condition where there is too much glucose, a type of sugar, in the blood.  Type 2 diabetes is the most common form of diabetes affecting some 90 per cent of all people with diabetes. It is sometimes described as a ‘lifestyle disease' strongly associated with high blood pressure, high cholesterol and obesity.

In the study ‘Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes' researchers extended the discovery and characterisation of variants influencing susceptibility to T2D.

The study expanded T2D association analysis to almost 150,000 individuals and in so doing added another 10 loci to the list of confirmed variant signals. It also concluded that genetic profiling had the potential to provide a useful risk assessment for developing T2D.

The second paper titled "Large-scale association analyses identify new loci influencing glycemic traits and provide insight into the underlying biological pathways" discovered another 38 new loci with glycemic traits not described in previous research, taking the total number of signals influencing glycemic traits to 53.

"This research will provide a better understanding of the genes associated with glycemic control that may interact with environmental factors and trigger diabetes," co-author Dr Jennie Hui from the UWA Schools of Pathology and Laboratory Medicine and Population Health said.

Related Stories

Genetic risks for type 2 diabetes span multiple ethnicities

Feb 09, 2012

A recent large and comprehensive analysis of 50,000 genetic variants across 2,000 genes linked to cardiovascular and metabolic function has identified four genes associated with type 2 diabetes (T2D) and six independent disease-associated ...

Glycemic variability affects mood and quality of life

May 10, 2012

(HealthDay) -- Glycemic variability appears to be associated with lower quality of life and negative moods in women with type 2 diabetes, according to a study published in the March 30 issue of Diabetes Te ...

Recommended for you

Study identifies genetic change in autism-related gene

8 hours ago

A new study from Bradley Hospital has identified a genetic change in a recently identified autism-associated gene, which may provide further insight into the causes of autism. The study, now published online in the Journal of ...

NIH issues finalized policy on genomic data sharing

Aug 27, 2014

The National Institutes of Health has issued a final NIH Genomic Data Sharing (GDS) policy to promote data sharing as a way to speed the translation of data into knowledge, products and procedures that improve health while ...

The genes behind the guardians of the airways

Aug 27, 2014

Dysfunctions in cilia, tiny hair-like structures that protrude from the surface of cells, are responsible for a number of human diseases. However the genes involved in making cilia have remained largely elusive. ...

Cancer leaves a common fingerprint on DNA

Aug 25, 2014

Regardless of their stage or type, cancers appear to share a telltale signature of widespread changes to the so-called epigenome, according to a team of researchers. In a study published online in Genome Me ...

User comments