Mathematical modelling to tackle metabolic diseases

Mathematical modelling to tackle metabolic diseases
© Thinkstock

Predictive mathematical models of signalling pathways are powerful biological tools that could be used for drug development. Using a similar approach, European scientists developed a computational model for answering research questions regarding the AMP-activated protein kinase pathway.

AMP-activated protein kinase has a master regulatory role in monitoring the cellular energy status. The signalling pathway involving AMP-activated protein kinase controls energy production and consumption, thereby affecting most intracellular biological processes.

The EU ' of the AMP-activated protein kinase pathway' (Ampkin) project was designed to contribute to our understanding of how the AMP-activated protein kinase pathways operate. More specifically, project scientists planned to generate predictive kinetic mathematical descriptions of pathway activation/deactivation in order to identify potential to treat human metabolic diseases.

Using existing data of protein, mRNA expression and enabled scientists to capture the pathway's dynamics and design kinetics models. Comparison of the yeast and mammalian pathways indicated that AMP-activated protein kinase has similar targets and physiological roles in both systems.

Additionally, assay tools were generated for the majority of the steps of the AMP cascade, thereby maximising the use of real data in the mathematical model. Combined with quantitative dynamic datasets generated following activation and deactivation of the AMP-activated protein kinase pathway, it was possible to build mathematical models for the yeast homologue, Snf1.

Importantly, the Ampkin model was designed to assess system perturbations and potentially be used for drug screening. By integrating modelling with experimentation, project partners managed to continuously improve the AMP-activated protein kinase model. This allowed them to address research-related questions and hopefully provide answers for such as obesity and type II diabetes.

add to favorites email to friend print save as pdf

Related Stories

AMPK amplifies Huntington's disease

Jul 18, 2011

A new study describes how hyperactivation of AMP-activated protein kinase (AMPK) promotes neurodegeneration in Huntington's disease (HD). The article appears online on July 18, 2011, in The Journal of Cell Biology.

Real-time monitoring of cellular signalling events

May 02, 2012

(Medical Xpress) -- Phosphorylation is one of the most important and ubiquitous cell regulatory events. EU-funded researchers assessed the dynamic events of intracellular phosphorylation in two model systems with important ...

Recommended for you

Scientists discover gene controlling muscle fate

10 hours ago

Scientists at the University of New Mexico have moved a step closer to improving medical science through research involving muscle manipulation of fruit flies. They discovered in the flight muscles of Drosophila ...

Study clues to aging bone loss

10 hours ago

In Canada, bone fractures due to osteoporosis affect one in three women and one in five men over their lifetimes, costing the health care system more than $2.3 billion a year.

User comments