Modeling metastasis

August 24, 2012
This is an illustration of the early stage of metastasis, called "intravasation." Tumor cells (blue) in contact with the bloodstream experience shear forces that can be strong enough to exceed the adhesion forces keeping them attached to the primary tumor. Once released into the bloodstream, they become circulating tumor cells capable of spreading the disease to other sites. Credit: The University of Southern California, Oregon Health and Science University, and the Scripps Research Institute

Cancer metastasis, the escape and spread of primary tumor cells, is a common cause of cancer-related deaths. But metastasis remains poorly understood. Studies indicate that when a primary tumor breaks through a blood vessel wall, blood's "stickiness" tears off tumor cells the way a piece of tape tears wrapping paper.

Until now, no one knew the physical forces involved in this process, the first step in metastasis. Using a statistical technique employed by animators, scientists created a new computer simulation that reveals how cancer cells enter the bloodstream. The researchers present their work in a paper accepted to the (AIP) journal Physics of Fluids.

To create the simulation, a group of scientists from the University of Southern California in Los Angeles, Oregon Health and Science University in Portland, Ore., and The Scripps Research Institute in La Jolla, Calif., first had to describe the physics of the process. The researchers couldn't directly measure the fluid forces acting on a tumor cell in the body. Instead, they imaged blood flowing at different velocities over a breast cancer cell on a glass plate. Then, they bridged the gap between known and unknown with an Active Shape Model, a statistical technique that animators use to create furry monsters. Active Shape Models track the shape of an object as it dynamically deforms. When combined with the experimental data, the modeling enabled the team to compute the fluid forces acting on the cell, and that in turn helped them tune the simulation.

The study is an important first step toward understanding the mechanical properties of and how they travel over the course of the disease, the researchers say. The ultimate goal is developing of metastasis' multi-step process, and thus new therapies to target metastasis.

Explore further: Researchers discover protein that could help prevent the spread of cancer

Related Stories

New signaling pathway linked to breast cancer metastasis

April 2, 2012

Lymph nodes help to fight off infections by producing immune cells and filtering foreign materials from the body, such as bacteria or cancer cells. Thus, one of the first places that cancer cells are found when they leave ...

Recommended for you

Forecasting the path of breast cancer in a patient

November 23, 2015

USC researchers have developed a mathematical model to forecast metastatic breast cancer survival rates using techniques usually reserved for weather prediction, financial forecasting and surfing the Web.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.