New research sheds light on the molecular mechanisms by which a virus contributes to cancer

Cancer genomics: An integrative approach to liver cancer
© iStockphoto.com/somersault18:24

Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide and is associated with exposure to hepatitis B virus (HBV). Patients carrying the virus have a 100-fold greater risk of developing HCC, but exactly why was unclear until now. Wing Kin Sung at the A*STAR Genome Institute of Singapore and the National University of Singapore, John Luk at the A*STAR Institute of Molecular and Cell Biology and the National University of Singapore and co-workers have now identified genetic mechanisms by which a virus contributes to this common form of cancer.

To investigate, the researchers obtained samples of liver tumors and adjacent non-cancerous tissues from 88 Chinese HCC patients, and used advanced DNA sequencing technology to analyze their genomes for HBV integration sites. They identified 399 sites at which HBV was integrated into the genome, and found that they were randomly distributed across the whole genome, but that most were clustered within a small number of 'hotspots'. The vast majority of the integration sites (344 out of 399; more than 86%) were found only in the samples obtained from .

The researchers analyzed breakpoints in the HBV genome—sites at which the circular genome of the virus breaks before being integrated into the genome of the host cell. They found that about 40% of breakpoints occur within a restricted region where three critical genetic elements are located.

This region, approximately 400 base pairs in length, contains the enhancer, a short regulatory sequence that binds proteins and enhances expression of the viral genes; the X gene, which plays critical roles in infection and replication; and the core gene, which encodes a protein envelope for the viral DNA. The high number of breakpoints in the region may facilitate HBV insertion into the , which in turn may promote by interrupting the coding sequences of .

The researchers also examined the prevalence of HBV insertions in DNA obtained from HCC patients. More than 92% of the patients in the sample had HBV integrated into their genomes, and the majority of these were found only in DNA from the tumors.

Non-cancerous tissues were also found to contain integrated viral genomes, but DNA isolated from the tumors tended to have more HBV integration sites. Thus, HBV integration patterns differ between cancerous and non-cancerous tissues, and there is a complex relationship between HBV integration and cancer development.

More information: Sung, W. K., Zheng, H., Li, S., Chen, R., Liu, X., et al. Genome-wide survey of recurrent HBV integration in hepatocellular carcinoma. Nature Genetics 44, 765–769 (2012). Article

Related Stories

Scientists unravel mechanism that causes liver cancer

date May 28, 2012

Scientists at the Genome Institute of Singapore (GIS) have unraveled the mechanism that causes liver cancer (hepatocellular carcinoma, HCC), one of the most common solid tumors worldwide. This genome-wide research was done ...

Hepatitis B virus mutations may predict risk of liver cancer

date Jul 02, 2009

Certain mutations in the DNA of the hepatitis B virus (HBV) are associated with the development of liver cancer and may help predict which patients with HBV infections are at increased risk of the disease, according to a ...

Androgen boosts hepatitis B virus replication

date Feb 16, 2012

Androgen enhances replication of hepatitis B virus (HBV), rendering males more vulnerable than females to this virus, according to research published in the February Journal of Virology.

Recommended for you

Merck drug Keytruda effective against 3 cancers

date 5 hours ago

One of the hot new cancer immunotherapy drugs, Merck & Co.'s Keytruda, strongly benefited patients with melanoma, lung cancer and mesothelioma, according to three studies presented Sunday at the American Association for Cancer ...

DNA blood test detects lung cancer mutations

date Apr 17, 2015

Cancer DNA circulating in the bloodstream of lung cancer patients can provide doctors with vital mutation information that can help optimise treatment when tumour tissue is not available, an international group of researchers ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.