Possible muscle disease therapeutic target found

August 6, 2012

The study of muscular system protein myostatin has been of great interest to researchers as a potential therapeutic target for people with muscular disorders. Although much is known about how myostatin affects muscle growth, there has been disagreement about what types of muscle cells it acts upon. New research from a team including Carnegie's Chen-Ming Fan and Christoph Lepper narrows down the field to one likely type of cell. Their work is published the week of August 6 by Proceedings of the National Academy of Sciences.

Myostatin is known to inhibit muscle growth and its function is common in many mammals, including cows, sheep, dogs, humans, and mice. lacking in myostatin have muscle mass that is almost double that of normal mice. This property is what makes it an attractive potential . By inhibiting myostatin a drug could, in theory, promote muscle growth, even in a person with a muscular disease.

There has been considerable debate about which types of are targeted by myostatin: fibrous muscle cells called myofibers, or muscle stem cells called . The satellite cells are activated by muscular injury, begin to divide, and fuse to myofibers. Some studies seem to indicate myostatin targets satellite cells, others indicate myofibers.

The research team, co-led by Fan and Se-Jin Lee, who is a former Carnegie Staff Associate and currently at Johns Hopkins University Medical School, used a variety of techniques—both genetic and pharmacological—and determined that the muscle growth caused by inhibiting myostatin does not significantly involve the incorporation of satellite cells into myofibers.

This finding has major implications for the possible use of myostatin as a clinical target. There are outstanding questions about how a drug designed to target myostatin would work in clinical conditions in which patient's satellite cells are depleted. For example, in diseases like muscular dystrophy, satellite cells are believed to compensate for degenerated muscle cells in the early stages of the disease, causing the pool of these stem cells to shrink over time. This work raises the possibility that these patients might still benefit from myostatin inhibitors.

"More work is needed to determine whether these findings are applicable to various clinical conditions, such as exercise, injury, and sarcopenia—degenerative loss of muscle mass associated with aging," Fan said. "However, our findings initially indicate that many different diseases affecting the muscular system could potentially be responsive to drugs that inhibit and thus promote muscle growth, without regard to the status of the muscle stem cell pool."

Related Stories

Recommended for you

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

Research identifies protein that regulates body clock

August 26, 2015

New research into circadian rhythms by researchers at the University of Toronto Mississauga shows that the GRK2 protein plays a major role in regulating the body's internal clock and points the way to remedies for jet lag ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.