pH-sensitive liposomal cisplatin improves peritoneal carcinomatosis treatment without side-effects

August 27, 2012

Scientists at the Oswaldo Cruz Foundation and Federal University of Minas Gerais, led by Dr. Andréa Teixeira-Carvalho and Dr. Mônica Cristina de Oliveira, have developed and characterized a circulating and pH-sensitive liposome containing cisplatin (SpHL-CDDP) aiming to promote the release of cisplatin near the tumor as well as decreasing toxicity. The development of analog drugs and new formulations are current strategies for increasing the effectiveness and safety of cisplatin as an anti-peritoneal carcinomatosis drug. The results, which appear in the August 2012 issue of Experimental Biology and Medicine demonstrate that the treatment of initial or disseminated Ehrlich ascitic tumor-bearing Swiss mice with SpHL-CDDP improved the antitumor efficacy and decreased renal and bone marrow toxicity of cisplatin-based therapy.

"Peritoneal carcinomatosis is a serious concern in the treatment of abdominal tumors such as hepatic, gastric and gynecological tumors", says Dr. Oliveira. "The strategy of local chemotherapy is interesting due to the possibility to increase the while minimizing systemic side-effects. SpHL-CDDP treatment was able to reduce cancer and increase survival, in the animal model, with no known toxicity clinical signs found in the free CDDP treatment." says Dr. Maroni.

These results open the possibility of future use of SpHL-CDDP in chemotherapy of peritoneal carcinomatosis. "New studies are underway in our research group to investigate the signaling pathways of cell death as well as use of high doses of SpHL-CDDP for the treatment of peritoneal carcinomatosis", says Dr. Teixeira-Carvalho.

Dr. Steven R. Goodman, Editor-in-Chief of , said " This very interesting study has utilized a new pH-sensitive circulating liposome containing cisplatin formulation which decreased cancer proliferation and drug toxicity in a mouse model. This provides the basis for further translational testing of this formulation leading to clinical trials aimed at more effective treatment of abdominal tumors".

Explore further: Curcumin compound improves effectiveness of head and neck cancer treatment

Related Stories

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.