Researchers may have found a weak link in the flu virus

The 5' and 3' splice sites (red arrows) are shown in a basic rendering of a segment of the RNA molecule (A), as well as in the pseudoknot (B) and hairpin (C) conformations

(Medical Xpress)—A team of researchers, led by scientists at the University of Rochester, has identified a location in a gene of the influenza A virus that could be used as a "switch" for disrupting replication of the virus. If a way can be found to manipulate the switch in an organism, the researchers believe it would have important implications for stopping the spread of influenza.

The work was conducted by Professor of Chemistry Douglas Turner and scientists Walter Moss, Lumbini Dela-Moss, and Salvatore Priore at the University of Rochester, and Ryszard Kierzek and Elzbieta Kierzek at the Polish Academy of Sciences in Poznan. Their findings were recently published in the journal .

The scientists singled out a () in their research because it allows the production of two proteins needed for viral propagation. Production of the second protein requires the mRNA to undergo the process of splicing, in which two remote sites of the long molecule join together, while the intervening segment is discarded.

This video is not supported by your browser at this time.

"We look at one of the splicing sites as a potential switch," said Turner. "If we can inactivate the switch to prevent the two sites from coming together, we can stop the virus from spreading."

The scientists analyzed data from the sequencing of the influenza genome, which is available on a government database, in order to construct a 2-D rendering of the RNA molecule. By using a combination of computational and biochemical tools, they found that one of the splicing sites-referred to as 3'-exists in either an exposed hairpin loop or a difficult-to-access pseudoknot. The scientists concluded that there are two ways to prevent splicing of the . One possibility is to hide the splicing sites from each other, which could involve forcing the 3' site to exist in the pseudoknot conformation. The second option would entail inserting a molecule into the 3' site to render it incapable of splicing. Either option, Turner said, would prevent production of a necessary protein and propagation of the virus.

David Topham, co-director of the New York Influenza Center for Excellence, called the identification of a splicing switch an "unexpected discovery." Topham, who studies human immune responses to influenza infection and vaccination, said, "One can hope this will lead to novel antiviral drugs to treat severe influenza infection. This RNA-based research is only at the very beginning, but I see this as very important to the influenza field."

The researchers were originally taking a different approach to the influenza virus, which involved studying the role of RNA in viral packaging-the process by which a virus transmits its to a host cell.

"That proved to be a very difficult problem, so we changed our focus to the RNA structures in each segment of the virus," said Moss. "We found the switch from our calculations, and, fortunately, it had some interesting properties."

Turner's lab will now collaborate with Matthew Disney, associate professor of chemistry at the Scripps Research Institute, to explore the binding of known molecules to the RNA. The hope is that the next phase of the research project will reveal important insights into the behavior of the virus, including how to stop the RNA splicing process.

More information: www.plosone.org/article/info%3… journal.pone.0038323

Related Stories

Getting wise to the influenza virus' tricks

date May 04, 2008

Influenza is currently a grave concern for governments and health organisations around the world. The worry is the potential for highly virulent bird flu strains, such as H5N1, to develop the ability to infect humans easily. ...

New mechanism in the regulation of human genes

date Jul 14, 2011

Scientists at the Technical University of Munich and the Helmholtz Zentrum Muenchen and along with their colleagues from the European Molecular Biology Laboratory (EMBL) in Heidelberg and the Centre for Genomic Regulation ...

Recommended for you

Breathless: How blood-oxygen levels regulate air intake

date 1 hour ago

Researchers have unraveled the elusive process by which small, highly vascular clusters of sensory cells in the carotid arteries "taste the blood," as a 1926 essay put it—the initial step in regulating ...

Sex matters ... even for liver cells

date 2 hours ago

Female liver cells, and in particular those in menopaused women, are more susceptible to adverse effects of drugs than their male counterparts, according to new research carried out by the JRC. It is well ...

Caring for blindness: A new protein in sight?

date 3 hours ago

Vasoproliferative ocular diseases are responsible for sight loss in millions of people in the industrialised countries. Many patients do not currently respond to the treatment offered, which targets a specific ...

When genes are expressed in reverse

date 3 hours ago

Genes usually always be expressed as in Western writing: from left to right on the white canvas of our DNA. So when we speak of the activity of our genome, in fact we are referring to the expression of genes ...

Technique could speed biologic drugs

date 8 hours ago

Antibodies are specific molecules that can lock onto a particular cellular structure to start, stop or otherwise temper a biological process. Because they are so specific, antibodies are at the forefront ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.