Discovering how the brain ages

Researchers at Newcastle University have revealed the mechanism by which neurons, the nerve cells in the brain and other parts of the body, age. The research, published today in Aging Cell, opens up new avenues of understanding for conditions where the aging of neurons are known to be responsible, such as dementia and Parkinson's disease.

The ageing process has its roots deep within the cells and molecules that make up our bodies. Experts have previously identified the molecular pathway that react to cell damage and stems the cell's ability to divide, known as cell senescence.

However, in cells that do not have this ability to divide, such as neurons in the brain and elsewhere, little was understood of the ageing process. Now a team of scientists at Newcastle University, led by Professor Thomas von Zglinicki have shown that these cells follow the same pathway.

This challenges previous assumptions on cell senescence and opens new areas to explore in terms of treatments for conditions such as dementia, or age-related hearing loss.

Newcastle University's Professor Thomas von Zglinicki who led the research said: "We want to continue our work looking at the pathways in as this study provides us with a new concept as to how damage can spread from the first affected area to the whole brain."

Working with the University's special colony of aged mice, the scientists have discovered that ageing in neurons follows exactly the same rules as in senescing fibroblasts, the cells which divide in the skin to repair wounds.

responses essentially re-program senescent fibroblasts to produce and secrete a host of dangerous substances including or reactive (ROS) and pro-inflammatory signalling molecules. This makes the 'rotten apple in a basket' that can damage and spoil the intact cells in their neighbourhood. However, so far it was always thought that ageing in cells that can't divide - post-mitotic, non-proliferating cells - like neurons would follow a completely different pathway.

Now, this research explains that in fact ageing in neurons follows exactly the same rules as in senescing fibroblasts.

Professor von Zglinicki, professor of Cellular Gerontology at Newcastle University said: "We will now need to find out whether the same mechanisms we detected in mouse brains are also associated with brain ageing and cognitive loss in humans. We might have opened up a short-cut towards understanding brain ageing, should that be the case."

Dr Diana Jurk, who did most of this work during her PhD in the von Zglinicki group, said: "It was absolutely fascinating to see how ageing processes that we always thought of as completely separate turned out to be identical. Suddenly so much disparate knowledge came together and made sense."

More information: Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. DOI: 10.1111/j.1474-9726.2012.00870.x. onlinelibrary.wiley.com/journa… )1474-9726/earlyview

Related Stories

Scientists solve ageing puzzle (w/ Video)

Feb 16, 2010

(PhysOrg.com) -- A discovery by Newcastle University experts could provide the next step in fighting age related diseases, such as diabetes and heart disease.

Recommended for you

Common infections tied to some stroke risk in kids

10 hours ago

A new study suggests that colds and other minor infections may temporarily increase stroke risk in children. The study found that the risk of stroke was increased only within a three-day period between a ...

Celebrities in 'Ice Bucket Challenge' to fight disease

21 hours ago

Steven Spielberg, Justin Bieber and Bill Gates are among many celebrities pouring buckets of ice water over their heads and donating to fight Lou Gehrig's disease, in a fundraising effort that has gone viral.

Study helps explain why elderly have trouble sleeping

22 hours ago

As people grow older, they often have difficulty falling asleep and staying asleep, and tend to awaken too early in the morning. In individuals with Alzheimer's disease, this common and troubling symptom ...

Targeted brain training may help you multitask better

Aug 20, 2014

The area of the brain involved in multitasking and ways to train it have been identified by a research team at the IUGM Institut universitaire de gériatrie de Montréal and the University of Montreal.

User comments