How breast cancer spreads: Researchers find key to lymph node metastasis in mice

The invasion of cancer cells into the lymph vessels that connect the breast to surrounding lymph nodes is the first step leading to the metastasis, or spread, of cancer throughout the body. Metastasis is the primary cause of breast cancer deaths. Surprisingly little is known about the control of this process and how it might be interrupted to prolong the lives of women with breast cancer. In a study to be reported Sept. 10 in the Proceedings of the National Academy of Sciences Online Early Edition, researchers at Johns Hopkins describe their discovery of how a protein responsible for cell survival in low oxygen can trigger the spread of cancer cells into the lymphatic system in a mouse model of breast cancer.

The researchers knew that like all solid tumor cancers, breast cancer cells can grow so densely that they end up starved for oxygen. To survive, cancer cells trigger the growth of new blood vessels by activating a protein called hypoxia-inducible factor 1, or HIF-1. "We've known that increased levels of HIF-1 are associated with increased tumor vessels and with patient mortality," says Gregg Semenza, M.D., Ph.D., the C. Michael Armstrong Professor of Medicine, director of the vascular program at Hopkins' Institute for and a member of the McKusick-Nathans Institute of . "Now we've found that HIF-1 activity is directly responsible for the spread of breast cancer to the ."

Working in mice injected with human breast cancer cells, which when left undisturbed grow into tumors that spread from the breast to the lungs, Semenza's team previously found that interfering with HIF-1 in these mice reduced growth of the primary tumor and prevented metastasis through blood vessels to the lung. "So of course we wanted to see whether blocking HIF-1 could affect lymph node metastasis as well," he says.

In new experiments, they injected mice with human breast cancer cells that were genetically engineered to knock down HIF-1 and, after 24 days, examined the mouse lymph nodes to see if the human breast cancer cells had spread. They found that compared to mice whose HIF-1 levels were left undisturbed, lymph nodes with knocked-down HIF-1 contained 76 percent fewer human breast cancer cells, supporting the idea that HIF-1 is somehow involved in the spread of breast cancer to lymph nodes.

To better understand how HIF-1 triggers this to happen, Semenza's team then starved human breast cancer cells of oxygen to see which of the genes involved in the growth of lymphatic vessels might respond to HIF-1. They found that the platelet-derived growth factor B gene —PDGF-B—was five times more active when oxygen was lacking. A closer look at the DNA sequence around the PDGF-B gene showed regions of DNA known to be recognized and bound by the HIF-1 protein. They tested this in cells and found that, indeed, HIF-1 protein binds to the PDGF-B gene and turns it on.

The team then took a closer look at PDGF-B to find out how it works once the gene is turned on. They found that PDGF-B that is made by is pumped out of the cell and stimulates the growth of lymph vessels.

Treating the mice with either digoxin, which blocks HIF-1 activity, or imatinib, a cancer drug, reduced tumor size by 78 percent and reduced by 94 percent, although the researchers emphasized that more work must be done to determine whether these drugs will be effective in treating breast cancer patients.

"We're very excited by these results, having shown for the first time that HIFs are directly involved in the lymphatic metastasis of breast cancer," says . "These results provide experimental support for breast cancer clinical trials that target HIF-1 or PDGF-B." The first study of digoxin in women with at the Johns Hopkins Oncology Center will begin later this year.

add to favorites email to friend print save as pdf

Related Stories

Researchers discover how breast cancer spreads to lung

Nov 16, 2011

The spread of breast cancer is responsible for more than 90 percent of breast cancer deaths. Now, the process by which it spreads -- or metastasizes -- has been unraveled by researchers at Johns Hopkins.

New signaling pathway linked to breast cancer metastasis

Apr 02, 2012

Lymph nodes help to fight off infections by producing immune cells and filtering foreign materials from the body, such as bacteria or cancer cells. Thus, one of the first places that cancer cells are found when they leave ...

Understanding cancer energetics

Jun 04, 2011

(Medical Xpress) -- It's long been known that cancer cells eat a lot of sugar to stay alive. In fact, where normal, noncancerous cells generate energy from using some sugar and a lot of oxygen, cancerous cells use virtually ...

New hope for cancer comes straight from the heart

Jan 05, 2009

Digitalis-based drugs like digoxin have been used for centuries to treat patients with irregular heart rhythms and heart failure and are still in use today. In the Dec. 16 issue of the Proceedings of the National Academy of ...

Recommended for you

New drug blocks gene driving cancer growth

16 hours ago

When active, the protein called Ral can drive tumor growth and metastasis in several human cancers including pancreatic, prostate, lung, colon and bladder. Unfortunately, drugs that block its activity are ...

User comments