Understanding the chemical mechanism behind antidepressants

September 21, 2012 by Adam Piore
Understanding the chemical mechanism behind antidepressants
Adult-born neurons in the hippocampus have been engineered to express channelrhodopsin (red), a protein that allows the activation of these neurons and the study of their impact on pattern separation and mood. Credit: Mazen Kheirbek and René Hen

(Medical Xpress)—Millions of Americans take antidepressants such as Prozac, Effexor, and Paxil, but the explanations for how they work never satisfied René Hen, a professor of psychiatry, neuroscience and pharmacology.

So the French-born researcher began a series of experiments a decade ago that are now helping to overturn about the class of antidepressants known as (SSRIs) and providing new insights into the in the brain that affect mood and cognition.

SSRIs, it has long been thought, work by inhibiting from reabsorbing serotonin, a signaling agent in the brain associated with positive mood. Yet unlike with , the effects of the drugs take weeks to be felt—even though the increase in serotonin circulating in the brain begins almost immediately. Something more, Hen concluded, must be happening after that to create such a profound effect in .

In 2003, Hen demonstrated an important finding in mice: The change in mood—measured by the amount of time it took the animals to overcome anxiety and feed in new environments—appeared to be due in part to the production of new brain cells in the hippocampus, an area of the brain associated with . And those new brain cells, Hen thinks, are the result of growth-stimulating chemicals released in the brain, in response to the increased serotonin.

Last year, Hen published another groundbreaking study, suggesting how these new brain cells might affect mood. The new brain cells are located in the dentate gyrus, an area of the hippocampus involved in pattern separation, a that helps us to recognize that something is new and different from similar experiences and stimuli. This information is then sent to other where the new stimulus is assigned a positive or negative .

Using genetic manipulations that block or enhance the production of brain cells in the , Hen demonstrated that the new brain cells led to a marked improvement not just in the cognitive abilities of mice, but also in their mood. "What we think, even though it hasn't been proven yet, is that some depressed human patients also have a problem with pattern separation," Hen says. "What we are hoping is, if we can boost production of new neurons in their hippocampus, maybe we can improve pattern separation in patients and decrease general symptoms."

Hen sees numerous ways that a disruption in pattern separation might lead to negative emotions such as anxiety and depression. The hippocampus is located next to, and is strongly linked with, another brain structure, the almond-shaped amygdala, thought to be the seat of our emotions.

If wrong judgments were assigned to novel stimuli in the amygdala, that could easily trigger the brain's fight-or-flight instinct or, at the very least, produce fear. That might help explain features of anxiety disorders—why survivors of the 9/11 terrorist attacks suffering from post-traumatic stress disorder, for instance, might be hit with a panic attack whenever they see an airplane fly over a skyscraper, Hen says.

A deficit in pattern separation might also help explain why depressed patients often are unable to experience pleasure, exhibit a lack of interest in novel experiences, and feel profound malaise. Perhaps they are simply unable to register an experience as novel or pleasurable because they are unable to recognize it as sufficiently different from prior experiences.

Hen is quick to point out that new brain cell production in the hippocampus is just one effect of a cascade of neurochemical changes unleashed by SSRIs. Other researchers have demonstrated, among other things, that the drugs also have a strong impact on the prefrontal cortex, the area of the brain associated with executive functions such as decision-making and restraint.

Even so, Hen hopes his findings will have significant implications for some depressed patients—and perhaps even reveal why certain antidepressants work for some people and not others. Over the next several years, he plans to explore his hypotheses further by evaluating the pattern-separation abilities of depressed patients before and after they are treated with SSRIs.

"There is still a long way to go, but we are at least starting to provide a theoretical framework," Hen says. "With complex disorders such as anxiety and depression, you are dealing with many parts of the brain. We think we have identified the biological basis for one of the symptoms present in a subgroup of patients, and maybe by targeting it, we will be able to help them."

Explore further: Blood test might predict how well a depressed patient responds to antidepressants

Related Stories

Memory formation triggered by stem cell development

February 23, 2012

Researchers at the RIKEN-MIT Center for Neural Circuit Genetics have discovered an answer to the long-standing mystery of how brain cells can both remember new memories while also maintaining older ones.

Recommended for you

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Sep 22, 2012
Using genetic manipulations that block or enhance the production of brain cells in the dentate gyrus, Hen demonstrated that the new brain cells led to a marked improvement not just in the cognitive abilities of mice, but also in their mood.

oh did he? hm. funny how this whole article is about sensible interesting fluffy hypothesis . and then just glosses over the science part. yes, it is remarkarable how little we know about the brain and how the 'wisdom' on understanding the neurocircuitry basis for mood does not exist. we DONT understand the brain's ability to create 'mood' .

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.