Chronic pain and shaking under control using 'pacemaker for the brain'

by Anni Aarinen
Chronic pain and shaking under control using 'pacemaker for the brain'

How does electrical stimulation affect the brain? A project by Aalto University and the University of Helsinki, launched in early 2012, studies the impact mechanism of deep brain stimulation and develops electrochemical sensors for more effective measuring of neurotransmitters in the brain. The long-term goals of the research are more specific treatment for Parkinson's disease and many other diseases of the nervous system.

Deep Stimulation (DBS) is a form of neurostimulation and means the application of to a certain . The impulses are sent by an implanted into the deepest part of the brain in a neurosurgical operation. The researchers believe that the stimulation releases neurotransmitters in the brain that either excite the nervous system or slow down its functions.

"In a way, DBS is like a pacemaker for the brain that provides instructions for the brain in regulating the amount of neurotransmitters", says the project leader, Professor Mervi Paulasto-Kröckel.

Stimulation of the deep has already been used in Finland for a long time to treat symptoms of severe neurological disorders. For example, with patients at an advanced stage of Parkinson's, it is possible to reduce the shaking and alleviate other symptoms by stimulating the brain to regulate the production of dopamine. The stimulation is also used to manage .

However, the mechanisms of deep brain stimulation are not yet fully understood.

"Highly sensitive and fast-reacting sensors are needed to detect the impact of the stimulation. In the project, we develop the sensors and conduct experiments on how well they detect and identify different neurotransmitters in the brain using electrochemistry", Paulasto-Kröckel explains.

More thorough knowledge of the impact mechanisms would have many advantages: could be used as treatment more specifically, safely and effectively, and its impact on the brain could be targeted as accurately as possible. It is hoped that the use of less invasive, alternative treatment methods could be increased. A deeper understanding of the method would also enable the discovery of new applications.

"For example in the US, neurostimulation is now being used in the treatment of psychiatric disorders, such as severe depression and obsessive-compulsive disorder. The information obtained could advance development in many other fields of science, too, such as tissue technology making use of electrical impulses", says Paulasto-Kröckel.

The research group is currently exploring material solutions for electrodes.

"We are particularly interested in carbon-based electrode materials, such as diamond-like carbon (DLC), graphene, boron-doped diamond (BDD) and carbon nanotubes. Using DLC-coated electrodes, we have now been able to measure dopamine concentrations at the micromole level. In the project, we also explore the possibility of immobilising enzymes needed in the measuring of glutamate on top of different composite carbon materials", explains Docent Tomi Laurila.

add to favorites email to friend print save as pdf

Related Stories

Weight and eating habits in Parkinson's disease

Nov 20, 2014

Patients affected by Parkinson's disease often show marked changes in body weight: they may gain or lose a lot of weight depending on the stage of the disease, or they may put on up to ten kilos after deep brain stimulation ...

Regions of the brain strengthen with age

Nov 03, 2014

For years, research into the aging brain has examined what is usually lost—hearing, vision, memory. Age is synonymous with decline. But current research is refuting that discouraging perspective. New techniques ...

Aging brains aren't necessarily declining brains

Nov 03, 2014

For years, conventional wisdom held that growing older tends to be bad news for brains. Past behavioral data largely pointed to loss in cognitive – that is, thinking – abilities with age, including poorer ...

Recommended for you

'Chatty' cells help build the brain

4 hours ago

The cerebral cortex, which controls higher processes such as perception, thought and cognition, is the most complex structure in the mammalian central nervous system. Although much is known about the intricate ...

'Trigger' for stress processes discovered in the brain

19 hours ago

At the Center for Brain Research at the MedUni Vienna an important factor for stress has been identified in collaboration with the Karolinska Institutet in Stockholm (Sweden). This is the protein secretagogin ...

New research supporting stroke rehabilitation

Nov 26, 2014

Using world-leading research methods, the team of Dr David Wright and Prof Paul Holmes, working with Dr Jacqueline Williams from the Victoria University in Melbourne, studied activity in an area of the brain ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.