Recent findings hold new implications for the pathogenesis of myotonic dystrophy

September 12, 2012

An important breakthrough could help in the fight against myotonic dystrophy. The discovery, recently published in the prestigious scientific journal Cell, results from an international collaboration between researchers at the IRCM, the Massachusetts Institute of Technology (MIT), the University of Southern California and Illumina. Their findings could lead to a better understanding of the causes of this disease.

Myotonic dystrophy (DM), also known as Steinert's disease, is the most common form of muscular dystrophies seen in adults. This disorder is characterized by and myotonia (difficulty in relaxing muscles following contraction). It is a multi-system disease, typically involving a wide range of tissues and muscle.

"We studied a specific family of proteins called muscleblind-like proteins (Mbnl), which were first discovered in the fruit fly Drosophila melanogaster," says Dr. Éric Lécuyer, Director of the research unit at the . "These RNA-binding proteins are known to play important functions in muscle and , as well as in the pathogenesis of DM in humans."

Because of the extreme of clinical symptoms, DM has been described as one of the most variable and complicated disorders known in medicine. The systems affected, the severity of symptoms, and the age of onset of those symptoms greatly vary between individuals, even within the same family.

"In patients with DM, levels of Mbnl proteins are depleted to different extents in various tissues," explains Dr. Neal A.L. Cody, postdoctoral fellow in Dr. Lécuyer's laboratory. "These alterations in levels and functions of Mbnl proteins are thought to play an important role in causing the disease."

"The global transcriptome analyses conducted in this study yielded several insights into Mbnl function and established genomic resources for future functional, modeling, and clinical studies," add Drs. Christopher B. Burge and Eric T. Wang from MIT, the researchers who headed the study. "This knowledge will be invaluable in reconstructing the order of events that occur during DM , and could lead to the development of diagnostic tools for monitoring disease progression and response to therapy."

According to Muscular Dystrophy Canada, myotonic dystrophy is the most common form of muscle disease, affecting approximately one person in 8,000 worldwide. However, in Quebec's region of Charlevoix / Saguenay-Lac-Saint-Jean, the prevalence is exceptionally high, with one person in 500 affected by the disease. There is no cure for myotonic dystrophy at the present time. Treatment is symptomatic, meaning that problems associated with myotonic dystrophy are treated individually.

Explore further: Some muscular dystrophy patients at increased risk for cancer

More information: Cell, Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins,

Related Stories

Antisense oligonucleotides make sense in myotonic dystrophy

February 27, 2012

Antisense oligonucleotides – short segments of genetic material designed to target specific areas of a gene or chromosome – that activated an enzyme to "chew up" toxic RNA (ribonucleic acid) could point the way ...

Recommended for you

Scientists convert skin cells into placenta-generating cells

October 12, 2015

Regenerative medicine is a new and expanding area that aims to replace lost or damaged cells, tissues or organs in the human body through cellular transplantation. Embryonic stem cells (ESCs) are pluripotent cells that are ...

Genes linked with malaria's virulence shared by apes, humans

October 12, 2015

The malaria parasite molecules associated with severe disease and death—those that allow the parasite to escape recognition by the immune system—have been shown to share key gene segments with chimp and gorilla malaria ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.