New insights into functionality of cystic fibrosis protein

A new JGP study provided evidence about the functionality of CFTR, a protein that plays a critical role in cystic fibrosis. Here, an updated model illustrates the relationship between an opening/closing cycle of the gate and ATP consumption in CFTR’s nucleotide-binding domains. Credit: Jih, K.-Y., et al. 2012. J. Gen. Physiol. 140:347–359.

CFTR is an important protein that, when mutated, causes the life-threatening genetic disease cystic fibrosis. A study in The Journal of General Physiology (JGP) details how an accidental discovery has provided new understanding about CFTR functionality.

From a scientific standpoint, CFTR is unique in that it is the only known ion channel—a protein pore that enables the passive diffusion of ions across cell membranes—in the enormous superfamily of ABC proteins, which normally operate as active transporters. As active transporters, ABC proteins use energy derived from ATP hydrolysis to move substrates across the against a concentration gradient. Although CFTR is equipped with the same structural elements as that of its ABC family "brethren," it has been unclear whether the also functions in the same way.

In the October 2012 issue of JGP, Tzyh-Chang Hwang (University of Missouri-Columbia) and colleagues effectively demonstrate that the mechanism through which CFTR functions is indeed akin to that of the ABC transporters. Specifically, the team used a mutant CFTR channel that exhibits two different open states to determine that ATP hydrolysis underlies the unidirectional cycling of CFTR through its open and closed states. This insight provides new evidence about the functionality of a protein that plays an important role in a very prevalent human disease, and continues to be of great interest to researchers.

More information: Jih, K.-Y., et al. 2012. J. Gen. Physiol. 140:347. Tsai, M.-F. 2012. J. Gen. Physiol. doi: 140:343.

add to favorites email to friend print save as pdf

Related Stories

Gene network restores CF protein function

Aug 01, 2012

Researchers at the University of Iowa Carver College of Medicine have discovered a genetic process that can restore function to a defective protein, which is the most common cause of cystic fibrosis (CF).

An 'unconventional' path to correcting cystic fibrosis

Sep 01, 2011

Researchers have identified an unconventional path that may correct the defect underlying cystic fibrosis, according to a report in the September 2nd issue of the journal Cell. This new treatment dramatically extends the li ...

Recommended for you

The impact of bacteria in our guts

Aug 22, 2014

The word metabolism gets tossed around a lot, but it means much more than whether you can go back to the buffet for seconds without worrying about your waistline. In fact, metabolism is the set of biochemical ...

Stem cell therapies hold promise, but obstacles remain

Aug 22, 2014

(Medical Xpress)—In an article appearing online today in the journal Science, a group of researchers, including University of Rochester neurologist Steve Goldman, M.D., Ph.D., review the potential and ch ...

New hope in fight against muscular dystrophy

Aug 22, 2014

Research at Stockholm's KTH Royal Institute of Technology offers hope to those who suffer from Duchenne muscular dystrophy, an incurable, debilitating disease that cuts young lives short.

Biologists reprogram skin cells to mimic rare disease

Aug 21, 2014

Johns Hopkins stem cell biologists have found a way to reprogram a patient's skin cells into cells that mimic and display many biological features of a rare genetic disorder called familial dysautonomia. ...

User comments