Researchers find possible key to regulation of ovarian cancer stem cells

(Medical Xpress)—Researchers at Moffitt Cancer Center have discovered that the micro ribonucleic acid miR-214 plays a critical role in regulating ovarian cancer stem cell properties. This knowledge, said the researchers, could pave the way for a therapeutic target for ovarian cancer.

The study appears in a recent issue of the The .

According to the study's lead author, Jin Q. Cheng, Ph.D., M.D., senior member of the Molecular Oncology Department and Molecular Oncology and Drug Discovery Program at Moffitt, certain miRNAs can cause therapeutic resistance and by regulating multiple gene targets. Previous work has shown that one microRNA—miR-214—is elevated in cancer. In ovarian cancer, up-regulated miR-214 has been associated with late-stage and high-grade tumors. In past research, miR-214 has also been associated with resistance to the chemotherapy drug cisplatin, but the role played by miR-214 in cancer stem cells had not been determined.

"Evidence suggests that cancer stem cells are responsible for cancer initiation, progression, metastasis, chemoresistance and relapse," Cheng said. "Data are emerging to support the role of both miRNAs and transcription factor p53 in cancer stem cell regulation."

Their current study found that miR-214 regulates ovarian cancer stem cell properties by direct repression of p53, which led to induction of a stem cell transcription factor (Nanog). The researchers demonstrated that p53 mediated miR-214-induced Nanog in ovarian cancer stem cells and also induced chemoresistance.

"It is plausible that miR-214 has an important influence on stem cells through its capacity to modulate p53," explained Cheng. "Our study demonstrates direct evidence that miR-214 plays a critical role in maintaining ovarian cancer ."

Given that knowledge, the researchers concluded that miR-214 is a potential for treating ovarian cancer.

More information: www.jbc.org/content/early/2012… M112.374611.full.pdf

Related Stories

Common cancer gene sends death order to tiny killer

date May 31, 2007

Scientists at Johns Hopkins have discovered one way the p53 gene does what it's known for—stopping the colon cancer cells. Their report will be published in the June 8 issue of Molecular Cell.

Potential drug for treating deadly brain cancer

date Sep 04, 2012

(Medical Xpress)—A*STAR scientists have identified a biomarker of the most lethal form of brain tumours in adults − glioblastoma multiforme. The scientists found that by targeting this biomarker and depleting ...

Ovarian cancer stem cells identified, characterized

date Apr 17, 2008

Researchers at Yale School of Medicine have identified, characterized and cloned ovarian cancer stem cells and have shown that these stem cells may be the source of ovarian cancer’s recurrence and its resistance to chemotherapy.

Recommended for you

Spicy treatment the answer to aggressive cancer?

date Jul 03, 2015

It has been treasured by food lovers for thousands of years for its rich golden colour, peppery flavour and mustardy aroma…and now turmeric may also have a role in fighting cancer.

Cancer survivors who smoke perceive less risk from tobacco

date Jul 02, 2015

Cancer survivors who smoke report fewer negative opinions about smoking, have more barriers to quitting, and are around other smokers more often than survivors who had quit before or after their diagnosis, according to a ...

Melanoma mutation rewires cell metabolism

date Jul 02, 2015

A mutation found in most melanomas rewires cancer cells' metabolism, making them dependent on a ketogenesis enzyme, researchers at Winship Cancer Institute of Emory University have discovered.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.