MicroRNA derails protein that blocks insulin production

September 20, 2012 by Marcia Goodrich
MicroRNA derails protein that blocks insulin production
Diabetes, a disease affecting nearly 26 million Americans, results when insulin fails to ferry glucose into cells, causing sugar to accumulate in the blood. Xiaoqing Tang has shed light on the insulin production process.

(Medical Xpress)—Work by Michigan Technological University biologist Xiaoqing Tang is yielding new insights into how a tiny snippet of genetic material can promote healthy insulin production in mice.

Her work may eventually lead to new therapies for the treatment of diabetes, a disease that affects nearly 26 million Americans and causes myriad health problems, including heart disease, and stroke. Diabetes results when the does not produce or release enough insulin into the or when cells fail to respond to the hormone.

The in question is a microRNA molecule called miR-30d, which is the same in mice and people. MicroRNA, or miRNA, attaches to long and prevents them from making proteins.

Proteins are the building blocks of life, but they can also cause serious problems; think of the plaques that develop in the brains of Alzheimer's patients.

One such protein is a tumor necrosis factor, which is involved in and can trigger the production of another problematic protein, called MAP4K4, which blocks the formation of insulin when cells are under adverse conditions. MAP4K4 throws a wrench into the works by interfering with production of an important protein named MafA that binds to DNA and is an essential part of the insulin-making pathway.

In a series of experiments, Tang and her research team showed how miR-30d can counteract the tumor necrosis factor–triggered production of MAP4K4 and help the pancreas make more insulin.

First, they compared from with those of wild mice and found that the diabetic cells have much less miR-30d.

Second, using genes they created in their lab, they made cells that produce extra amounts of miR-30d. Those cells doubled the amount of the good protein MafA and generated much more insulin, showing that miR-30d works at least in part by activating MafA in the pancreas.

Finally, they added the tumor necrosis factor to those cells with the extra miR-30d. Unlike regular cells, which had MafA production blocked by the tumor necrosis factor, the super cells managed to keep on producing MafA, though not as much as before.

"What we found with miR-30d is that it can increase cells' ability to make insulin by activating MafA," Tang said. "We've also shown that the tumor necrosis factor–triggered MAP4K4 is a direct target of miR-30d. Based on our data, we think miR-30d probably plays multiple roles, both in enhancing and in protecting cells from the inflammatory effects of ."

Their latest research was published online Sept. 7 in The Journal of Biological Chemistry. The article, "MicroRNA-30d Induces Insulin Transcription Factor MafA and Insulin Production by Targeting Mitogen-Activated Protein 4 Kinase 4 in Pancreatic Beta Cells," was authored by Tang, Xiaomin Zhao and Ramkumar Mohan of Michigan Tech; and Sabire Ozcan of the University of Kentucky.

Tang is now studying transgenic mice that generate extra amounts of miR-30d. "We want to induce diabetes and see if the process slows down in the transgenic mice," she said. "If that happened, it would be great."

The study is in its early stages, but preliminary results are intriguing. The transgenic mice are smaller and leaner than wild mice. Yet they don't seem to have extra insulin in their blood.

"We still don't understand why insulin is low in the blood of the transgenic mice." she said. "It may mean that insulin gets into cells from the blood very quickly. Or, the beta cells in the pancreas may sense that they don't need to produce much insulin. Or maybe it's another process all together. A mouse is much more complicated than a cell line."

Explore further: Researchers identify key role of microRNAs in melanoma metastasis

Related Stories

Scientists use uterine stem cells to treat diabetes

September 14, 2011

Controlling diabetes may someday involve mining stem cells from the lining of the uterus, Yale School of Medicine researchers report in a new study published in the journal Molecular Therapy. The team treated diabetes in ...

Stem cells can beat back diabetes: UBC research

June 27, 2012

University of British Columbia scientists have successfully reversed diabetes in mice using stem cells, paving the way for a breakthrough treatment for a disease that affects nearly one in four Canadians.

Recommended for you

Flu study, on hold, yields new vaccine technology

September 2, 2015

Vaccines to protect against an avian influenza pandemic as well as seasonal flu may be mass produced more quickly and efficiently using technology described today by researchers at the University of Wisconsin-Madison in the ...

We've all got a blind spot, but it can be shrunk

August 31, 2015

You've probably never noticed, but the human eye includes an unavoidable blind spot. That's because the optic nerve that sends visual signals to the brain must pass through the retina, which creates a hole in that light-sensitive ...

Biologists identify mechanisms of embryonic wound repair

August 31, 2015

It's like something out of a science-fiction movie - time-lapse photography showing how wounds in embryos of fruit flies heal themselves. The images are not only real; they shed light on ways to improve wound recovery in ...

New 'Tissue Velcro' could help repair damaged hearts

August 28, 2015

Engineers at the University of Toronto just made assembling functional heart tissue as easy as fastening your shoes. The team has created a biocompatible scaffold that allows sheets of beating heart cells to snap together ...

Fertilization discovery: Do sperm wield tiny harpoons?

August 26, 2015

Could the sperm harpoon the egg to facilitate fertilization? That's the intriguing possibility raised by the University of Virginia School of Medicine's discovery that a protein within the head of the sperm forms spiky filaments, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.