Mutant parasite could stop malaria in its tracks

September 21, 2012

(Medical Xpress)—University of Nottingham Malaria experts have found a way of disabling one of the many phosphatase proteins which breathe life into the malaria parasite. The result is a mutant which is unable to complete the complex life cycle crucial to its development. The discovery could help to design drugs to save thousands of lives.

The research led by Dr Rita Tewari in the Centre for Genetics and Genomics in the School of Biology in collaboration with the University of Oxford, Imperial College London, the University of Leicester and the MRC National Institute for Medical Research, has been published in the prestigious open access journal PLOS Pathogens.

The researchers, funded by the MRC and the Wellcome Trust, have worked out how the unique enzyme—PPKL phosphatase—controls the development of the parasite at an essential stage for transmission. By removing this enzyme other proteins fail to work properly and the resulting mutant has the wrong shape to burrow through the stomach wall of the female Anopheles mosquito and pass on the disease to humans.

Approximately 40 phosphatase enzymes are present in the genome of malaria parasite—PPKL is the first whose function is identified. The research group has already begun work on identifying the rest.

Dr Tewari said: "This is the first step in understanding the functional role of phosphatases in malaria. This enzyme is absent in humans and so it can be explored as a good target for and transmission. The control of parasite transmission is important in order to prevent the spread of malaria. Targeting PPKL can be an important player in this process."

The life of a malaria parasite

Malaria is spread by transmission by the female Anopheles mosquito. The of the malaria parasite is complex. The sporozoite form of the parasite is injected into the stream with mosquito saliva. It then takes just 30 minutes for the to find and enter . Within five to seven days they have developed into thousands of merozoites. These merozoites burst out of the liver, into the and invade red where the parasite multiplies again. Two days later new merozoites burst from the blood cells and infect more blood cells. Some merozoites develop into gametocytes—the sexual stages of the parasite—and these are taken up by another mosquito while it is taking its blood meal. Inside the mosquito gut the gametocytes develop into gametes and fuse to form a zygote. It is at this stage—when the zygote is transforming into a mobile ookinete—that the scientists can strike.

Breaking the complex life cycle

The banana shape of the ookinete gives it a special tip so it can invade the gut wall. The research group has shown that the abnormal ookinetes have lost their 'banana' shape and all their essential functions. If it can't break through the gut wall the transmission of malaria is stopped.

Tony Holder, Head of Parasitology at the MRC National Institute for Medical Research UK and a senior collaborator in the study, said: "Transmission through the mosquito represents a bottle neck in the parasite's life cycle. Intervention strategies to these stages will be essential for the long term goal to eradicate and finally eliminate ."

Explore further: Slamming the brakes on the malaria life cycle

More information: After publication the full research paper can be found at:

Related Stories

Slamming the brakes on the malaria life cycle

February 23, 2012

Scientists have discovered a new target in their fight against the devastating global disease 'malaria' thanks to the discovery of a new protein involved in the parasite's life cycle.

Recommended for you

Zika virus infection alters human and viral RNA

October 20, 2016

Researchers at University of California San Diego School of Medicine have discovered that Zika virus infection leads to modifications of both viral and human genetic material. These modifications—chemical tags known as ...

Food-poisoning bacteria may be behind Crohn's disease

October 19, 2016

People who retain a particular bacterium in their gut after a bout of food poisoning may be at an increased risk of developing Crohn's disease later in life, according to a new study led by researchers at McMaster University.

Neurodevelopmental model of Zika may provide rapid answers

October 19, 2016

A newly published study from researchers working in collaboration with the Regenerative Bioscience Center at the University of Georgia demonstrates fetal death and brain damage in early chick embryos similar to microcephaly—a ...

Scientists uncover new facets of Zika-related birth defects

October 17, 2016

In a study that could one day help eliminate the tragic birth defects caused by Zika virus, scientists from the Florida campus of The Scripps Research Institute (TSRI) have elucidated how the virus attacks the brains of newborns, ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.