In obesity, a micro-RNA causes metabolic problems

September 20, 2012
University of Illinois molecular and integrative physiology professor Jongsook Kim Kemper and her colleagues were able to reverse some of the metabolic problems associated with obesity in mice by targeting a micro-RNA. Credit: L. Brian Stauffer

Scientists have identified a key molecular player in a chain of events in the body that can lead to fatty liver disease, Type II diabetes and other metabolic abnormalities associated with obesity. By blocking this molecule, the researchers were able to reverse some of the pathology it caused in obese mice.

Their findings appear in the Proceedings of the National Academy of Sciences.

MiR-34a (pronounced MEER-34a), a micro-RNA, occurs at higher than normal levels in the livers of obese animals and in human patients with . In the new study, researchers discovered that miR-34a gums up production of a protein receptor, called beta-Klotho, needed for metabolic signaling in the liver. This hinders normal , glycogen and and other metabolic activities.

In response to signals from the small intestine, beta-Klotho contributes to normal liver function after a meal, said University of Illinois molecular and integrative physiology professor Jongsook Kim Kemper, who led the study. But in obesity, levels of miR-34a surge much higher than normal, resulting in abnormally low levels of beta-Klotho.

"The downstream effect is more glucose in the blood, more fat in the liver," she said.

The effects are dramatic. Slices of from obese mice are laden with fat, whereas normal mice have minimal amounts of fat in their livers.

The researchers used a complementary strand of RNA (called antisense RNA) to neutralize miR-34a in obese mice. This therapeutic approach improved "metabolic outcomes, including decreased liver fat and improved glucose level in the blood," Kemper said.

Explore further: Secreted protein sends signal that fat is on the way

More information: "Aberrantly Elevated miR-34a in Obesity Attenuates Hepatic Responses to FGF19 by Targeting a Membrane Co-Receptor β-Klotho," Proceedings of the National Academy of Sciences, 2012. www.pnas.org/content/early/2012/09/12/1205951109.abstract

Related Stories

Secreted protein sends signal that fat is on the way

December 2, 2008

After you eat a burger and fries or other fat-filled meal, a protein produced by the liver may send a signal that fat is on the way, suggests a report in the December issue of the journal Cell Metabolism, a Cell Press publication.

Getting to the root of fatty liver disease

April 5, 2011

Researchers have identified a molecular switch that appears to be a common feature in the development of fatty liver disease. The discovery made in mice is consistent with data from human patients, suggesting that it may ...

Recommended for you

More evidence that 'healthy obesity' may be a myth

August 18, 2016

The term "healthy obesity" has gained traction over the past 15 years, but scientists have recently questioned its very existence. A study published August 18 in Cell Reports provides further evidence against the notion of ...

A metabolic master switch underlying human obesity

August 19, 2015

Obesity is one of the biggest public health challenges of the 21st century. Affecting more than 500 million people worldwide, obesity costs at least $200 billion each year in the United States alone, and contributes to potentially ...

Scientists probe obesity's ties to breast cancer risk

August 20, 2015

Obesity is a well-known risk factor for breast cancer, but researchers haven't figured out what connects the two. A new study suggests the link may be due to a change in breast tissue structure, which might promote breast ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.