Pregnancy generates maternal immune-suppressive cells that protect the fetus

September 26, 2012

A new study published online in the journal Nature suggests it might be possible to develop vaccines to prevent premature birth and other pregnancy complications. If so, such vaccines would be the first intended to stimulate the subset of regulatory CD4 T cells that suppress the immune response.

Current vaccines are specifically designed to stimulate T cell subsets that activate the immune response.

The study, led by a researcher at Cincinnati Children's Hospital Medical Center, shows the immune system of a pregnant mother stimulates cells that selectively prevent attack and rejection of fetal tissues recognized as being foreign. Importantly, these pregnancy-induced, immune suppressive are retained after delivery, and rapidly re-accumulate and provide protection in subsequent pregnancy.

Successful pregnancy requires the ability to tolerate antigens inherited from the father. These antigens evoke an by the mother's immune system, which considers these antigens foreign. If the mother gets pregnant again, these T cells remember the first pregnancy and provide additional protection to the fetus from being attacked by the mother's own immune system.

"We show definitively immune suppressive regulatory can form immunological memory," says Sing Sing Way, MD PhD, a physician researcher in Infectious Diseases at Cincinnati Children's and the study's senior author. "These memory features shown in pregnancy illustrate why complications become reduced in subsequent compared with primary pregnancy, but can also be broadly applied to new ways to better control the stringent balance between immune stimulation and suppression for preventing ."

Way and his colleagues demonstrate that the protective program during pregnancy is established by the expansion and retention of regulatory T cells that specifically recognize fetal antigens.

"Knowing this, we can design vaccines that specifically target immune suppressive T cells," explains Dr. Way. "Current vaccines exclusively target immune activating T cells. With the polio vaccine, for example, vaccination is designed to induce long-lasting immune-activating cells that eradicate the virus with later infection. A vaccine that targets the expansion and retention of immune suppressive cells would allow selective silencing of undesired responses and prevent them from attacking the body."

Having shown that these cells can generate and retain immunological memory might make it possible to develop vaccines against autoimmune disorders – such as juvenile idiopathic arthritis and type 1 diabetes – in which the body's immune system attacks its own healthy tissues.

Explore further: Researchers may have discovered key to help women fight infections during pregnancy

More information: DOI: 10.1038/nature11462

Related Stories

Research describes advantages of new vaccine adjuvant

December 12, 2011

New research from the laboratory of Dr. Elizabeth Leadbetter at the Trudeau Institute may lead to a whole new class of vaccines. Dr. Leadbetter's lab has discovered new properties of a potential vaccine adjuvant that suggest ...

Recommended for you

Four gut bacteria decrease asthma risk in infants

September 30, 2015

New research by scientists at UBC and BC Children's Hospital finds that infants can be protected from getting asthma if they acquire four types of gut bacteria by three months of age. More than 300 families from across Canada ...

Flu infection reveals many paths to immune response

September 28, 2015

A new study of influenza infection in an animal model broadens understanding of how the immune system responds to flu virus, showing that the process is more dynamic than usually described, engaging a broader array of biological ...

Immune cells may help fight against obesity

September 15, 2015

While a healthy lifestyle and "good genes" are known to help prevent obesity, new research published on September 15 in Immunity indicates that certain aspects of the immune system may also play an important role. In the ...

The Achilles' heel of HIV

September 8, 2015

Researchers at the University of Bonn have discovered how cells in the body can detect the genetic material of so-called retroviruses. The pathogen of the immunodeficiency disease AIDS, the HI-1 virus, also belongs to this ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.