Charting the SH2 pool

September 13, 2012

New research published in BioMed Central's open access journal Cell Communication and Signaling describes a large set of interactions (interactome) which maps the range of phosphotyrosine (pTyr)-dependent interactions with SH2 domains underlying insulin (Ins), insulin-like growth factor-1 (IGF-1) and fibroblast growth factor (FGF) signaling pathways.

In the control of SH2 domains can be thought of as a master connector and tyrosine kinases the switch. SH2 domains interact with phosphorylated tyrosine containing peptides on receptors and other signaling molecules and couple the to the next protein in the signaling chain.

The contains 111 SH2 domain containing proteins which bind to activated protein tyrosine kinases (PTK). These cell signaling pathways are involved in and their mis-regulation is implicated in a wide range of cancers, immunodeficiences and even diabetes.

A panel of 50 SH2 domains was screened for binding against a set of 192 human phosphotyrosine from the FGF and Ins/IGF-1 pathways and found an extensive interactome consisting of over 500 interactions, most of which are novel.

The pool also highlighted the selectivity of individual SH2 domains. Six general classes of SH2 domain specificity were found which demonstrate not only the evolutionary similarities between SH2 domains in the same family of proteins but across families as well. The study also found subtle differences which could potentially control specificity.

Dr Piers Nash, from The University of Chicago, who led this study observed, "Our study of pTyr binding by SH2 domains is a valuable insight into the selectivity that underpins complex signaling networks. Understanding these signaling systems is a vitally important step towards explaining pathologies such as diabetes and cancer, as well as normal physiology and development."

He continued, "Every cell in our body is an immensely powerful computational device capable of integrating millions of factors and responding with remarkable fidelity. What lies beneath this computational power is not static wires, but dynamic interactions that leverage a finite number of genes to generate an almost infinite number of combinatorial interactions between the protein components that are at the heart of cellular signaling. Mapping the immensely complex set of interactions between the parts laid out by the genetic code represents a next frontier for biomedical science. "

More information: SRC Homology 2 Domain Binding Sites in Insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome Bernard A Liu, Brett W Engelmann, Karl Jablonowski, Katherine Higginbotham, Andrew B Stergachis and Piers D Nash, Cell Communication and Signaling (in press)

Related Stories

Combination therapies for drug-resistant cancers

October 10, 2011

Some cancers can be effectively treated with drugs inhibiting proteins known as receptor tyrosine kinases, but not those cancers caused by mutations in the KRAS gene. A team of researchers led by Jeffrey Engelman, at Massachusetts ...

Researchers identify drivers of sarcoma growth and survival

May 2, 2012

To better understand the signaling pathways active in sarcomas, researchers at Moffitt Cancer Center used state-of-the-art mass spectrometry-based proteomics to characterize a family of protein enzymes that act as "on" or ...

Recommended for you

Flow means 'go' for proper lymph system development

July 27, 2015

The lymphatic system provides a slow flow of fluid from our organs and tissues into the bloodstream. It returns fluid and proteins that leak from blood vessels, provides passage for immune and inflammatory cells from the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.