Strategy developed to improve delivery of medicines to the brain

New research offers a possible strategy for treating central nervous system diseases, such as brain and spinal cord injury, brain cancer, epilepsy, and neurological complications of HIV. The experimental treatment method allows small therapeutic agents to safely cross the blood-brain barrier in laboratory rats by turning off P-glycoprotein, one of the main gatekeepers preventing medicinal drugs from reaching their intended targets in the brain.

The findings appeared online Sept. 4 in the , and is the result of a study from scientists at the National Institute of (NIEHS), part of the National Institutes of Health.

"Many fail because they cannot cross the blood-brain barrier sufficiently to provide a therapeutic dose to the brain," said David Miller, Ph.D., head of the Laboratory of Toxicology and Pharmacology at NIEHS, and leader of the team that performed the study. "We hope our new strategy will have a positive impact on people with in the future."

In a two-pronged approach, the research team first determined that treating rat brain capillaries with the multiple sclerosis drug marketed as Gilenya (fingolimod) stimulated a specific biochemical signaling pathway in the blood-brain barrier that rapidly and reversibly turned off P-glycoprotein. Team members then pretreated rats with fingolimod, and administered three other drugs that P-glycoprotein usually transports away from the brain. They observed a dramatic decline in P-glycoprotein transport activity, which led to a threefold to fivefold increase in brain uptake for each of the three drugs.

Ronald Cannon, Ph.D., is a staff scientist in the Miller lab and first author on the paper. He said one of the burning questions the team wants to tackle next is to understand how the signaling system turns off P-glycoprotein. He equates the mechanism to what happens when a person flips a light switch.

"If you physically turn off a light using the button on the wall, the light will go out because the electrical current to the light bulb has been interrupted," Cannon explained. "But what happens when the signaling pathway shuts down P-glycoprotein? Does it bring in another protein to bind to the pump, take away its energy source, modify the structure of the pump, or something else?"

Cannon said the paper's findings open a new way of thinking regarding targets for drug design, a thought that is emotionally gratifying for him and many other researchers whose scientific discoveries generally don't directly translate into helping people with illnesses.

"Although much more research needs to be done, delivering therapeutics to the central nervous system is one of the final frontiers of pharmacotherapy, Cannon added."

More information: Cannon RE, Peart JC, Hawkins BT, Campos CR, Miller DS. 2012. Targeting blood-brain barrier sphingolipid signaling reduces basal P-glycoprotein activity and improves drug delivery to the brain. Proc Natl Acad Sci U S A; doi:10.1073/pnas.1203534109 [Online 4 September 2012].

Related Stories

Brain study may lead to improved epilepsy treatments

date Apr 14, 2008

Using a rodent model of epilepsy, researchers found one of the body’s own neurotransmitters released during seizures, glutamate, turns on a signaling pathway in the brain that increases production of a protein that could ...

Toward the first nose drops to treat brain cancer

date Sep 22, 2010

Scientists are reporting the development and successful initial testing of a new form of methotrexate -- the mainstay anticancer drug -- designed to be given as nose drops rather than injected. It shows promise as a more ...

Recommended for you

Breathless: How blood-oxygen levels regulate air intake

date 6 minutes ago

Researchers have unraveled the elusive process by which small, highly vascular clusters of sensory cells in the carotid arteries "taste the blood," as a 1926 essay put it—the initial step in regulating ...

Sex matters ... even for liver cells

date 1 hour ago

Female liver cells, and in particular those in menopaused women, are more susceptible to adverse effects of drugs than their male counterparts, according to new research carried out by the JRC. It is well ...

Caring for blindness: A new protein in sight?

date 2 hours ago

Vasoproliferative ocular diseases are responsible for sight loss in millions of people in the industrialised countries. Many patients do not currently respond to the treatment offered, which targets a specific ...

When genes are expressed in reverse

date 2 hours ago

Genes usually always be expressed as in Western writing: from left to right on the white canvas of our DNA. So when we speak of the activity of our genome, in fact we are referring to the expression of genes ...

Technique could speed biologic drugs

date 7 hours ago

Antibodies are specific molecules that can lock onto a particular cellular structure to start, stop or otherwise temper a biological process. Because they are so specific, antibodies are at the forefront ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.