Therapeutic impact of cell transplantation aided by magnetic factor

Two studies in the current issue of Cell Transplantation (21:6), now freely available on-line, demonstrate how the use of magnetic particles are a factor that can positively impact on the targeted delivery of transplanted stem cells and to also provide better cell retention.

A research team from the University of British Columbia used focused magnetic stem cell targeting to improve the delivery and transport of mensenchymal stem cells to the retinas of test rats while researchers from Cedars-Sinai Heart Institute (Los Angeles) injected magnetically enhanced cardiac stem cells to guide the cells to their target to increase cell retention and in rat models of ischemic/.

According to study co-author Dr. Kevin Gregory-Evans, MD, PhD, of the Centre for Macular Degeneration at the University of British Columbia, degeneration of the retina - the cause of macular degeneration as well as other eye diseases - accounts for most cases of blindness in the developed world. To date, the transplantation of mensenchymal stem cells to the damaged retina has had "limited success" because the cells reaching the retina have been in "very low numbers and in random distribution."

Seeking to improve to the retina, the researchers magnetized rat (MSCs) using superparamagnetic iron oxide nanoparticles (SPIONs). Via an externally placed magnet, they directed the SPION enhanced cells to the peripheral retinas of the test animals.

"Our results showed that large numbers of blood-borne magnetic MSCs can be targeted to specific retinal locations and produce therapeutically useful in the ," explained Gregory-Evans. "Such an approach would be optimal in focal tissue diseases of the outer retina, such as age-related macular degeneration."

—-

The cardiac stem cell, said researchers at Cedars-Sinai Heart Institute, represents a promising candidate for regenerating the injured myocardium, the place where they reside. However, because of cyclical cardiac contraction, 'venous washout' is a factor that causes extremely low cell retention and undermines the potential beneficial impact of cell transplantation.

"Because the efficiency of intracoronary stem cell transplantation is limited by low cell retention, we sought to improve cell retention by magnetic targeting," said study lead author Dr. Eduardo Marban.

The researchers injected cardiac stem cells labeled with iron microspheres into the left ventricular cavity of syngenic rats during brief aortic clamping. After 24 hours, they found that placement of a magnet above the heart during and after injection enhanced cell retention by over five-fold.

"The success of cell therapy relies on effective delivery to the desired region," explained Dr. Marban. "In the heart, cardiac contraction results in substantial cell loss during and after cell delivery. We found that magnetic attraction can focus iron-tagged therapeutic agents within a target region as we successfully used magnetism to counteract venous washout and improve cell retention in the contracting heart."

More information:

Yanai, A.; Häfeli, U. O.; Metcalfe, A. L.; Soema, P.; Addo, L.; Gregory-Evans, C. Y.; Po, K.; Shan, X.; Moritz, O. L.; Gregory-Evans, K. Focused Magnetic Stem Cell Targeting to the Retina Using Superparamagnetic Iron Oxide Nanoparticles. Cell Transplant. 21(6):1137-1148; 2012.

Cheng, K.; Malliaras, K.; Li, T.-S.; Sun, B.; Houde, C.; Galang, G.; Smith, J.; Matsushita, N.; Marbán, E. Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit After Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion. Cell Transplant. 21(6):1121-1135; 2012.

add to favorites email to friend print save as pdf

Related Stories

Scientists successfully awaken sleeping stem cells

Mar 18, 2008

Scientists at Schepens Eye Research Institute have discovered what chemical in the eye triggers the dormant capacity of certain non-neuronal cells to transform into progenitor cells, a stem-like cell that can generate new ...

Recommended for you

No more bleeding for 'iron overload' patients?

1 hour ago

Hemochromatosis (HH) is the most common genetic disorder in the western world, and yet is barely known. Only in the US 1 in 9 people carry the mutation (although not necessarily the disease).

3-D printing offers innovative method to deliver medication

6 hours ago

3-D printing could become a powerful tool in customizing interventional radiology treatments to individual patient needs, with clinicians having the ability to construct devices to a specific size and shape. That's according ...

Mystery of the reverse-wired eyeball solved

Feb 27, 2015

From a practical standpoint, the wiring of the human eye - a product of our evolutionary baggage - doesn't make a lot of sense. In vertebrates, photoreceptors are located behind the neurons in the back of the eye - resulting ...

Neurons controlling appetite made from skin cells

Feb 27, 2015

Researchers have for the first time successfully converted adult human skin cells into neurons of the type that regulate appetite, providing a patient-specific model for studying the neurophysiology of weight ...

Quality control for adult stem cell treatment

Feb 27, 2015

A team of European researchers has devised a strategy to ensure that adult epidermal stem cells are safe before they are used as treatments for patients. The approach involves a clonal strategy where stem cells are collected ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.