Therapeutic impact of cell transplantation aided by magnetic factor

Two studies in the current issue of Cell Transplantation (21:6), now freely available on-line, demonstrate how the use of magnetic particles are a factor that can positively impact on the targeted delivery of transplanted stem cells and to also provide better cell retention.

A research team from the University of British Columbia used focused magnetic stem cell targeting to improve the delivery and transport of mensenchymal stem cells to the retinas of test rats while researchers from Cedars-Sinai Heart Institute (Los Angeles) injected magnetically enhanced cardiac stem cells to guide the cells to their target to increase cell retention and in rat models of ischemic/.

According to study co-author Dr. Kevin Gregory-Evans, MD, PhD, of the Centre for Macular Degeneration at the University of British Columbia, degeneration of the retina - the cause of macular degeneration as well as other eye diseases - accounts for most cases of blindness in the developed world. To date, the transplantation of mensenchymal stem cells to the damaged retina has had "limited success" because the cells reaching the retina have been in "very low numbers and in random distribution."

Seeking to improve to the retina, the researchers magnetized rat (MSCs) using superparamagnetic iron oxide nanoparticles (SPIONs). Via an externally placed magnet, they directed the SPION enhanced cells to the peripheral retinas of the test animals.

"Our results showed that large numbers of blood-borne magnetic MSCs can be targeted to specific retinal locations and produce therapeutically useful in the ," explained Gregory-Evans. "Such an approach would be optimal in focal tissue diseases of the outer retina, such as age-related macular degeneration."

—-

The cardiac stem cell, said researchers at Cedars-Sinai Heart Institute, represents a promising candidate for regenerating the injured myocardium, the place where they reside. However, because of cyclical cardiac contraction, 'venous washout' is a factor that causes extremely low cell retention and undermines the potential beneficial impact of cell transplantation.

"Because the efficiency of intracoronary stem cell transplantation is limited by low cell retention, we sought to improve cell retention by magnetic targeting," said study lead author Dr. Eduardo Marban.

The researchers injected cardiac stem cells labeled with iron microspheres into the left ventricular cavity of syngenic rats during brief aortic clamping. After 24 hours, they found that placement of a magnet above the heart during and after injection enhanced cell retention by over five-fold.

"The success of cell therapy relies on effective delivery to the desired region," explained Dr. Marban. "In the heart, cardiac contraction results in substantial cell loss during and after cell delivery. We found that magnetic attraction can focus iron-tagged therapeutic agents within a target region as we successfully used magnetism to counteract venous washout and improve cell retention in the contracting heart."

More information:

Yanai, A.; Häfeli, U. O.; Metcalfe, A. L.; Soema, P.; Addo, L.; Gregory-Evans, C. Y.; Po, K.; Shan, X.; Moritz, O. L.; Gregory-Evans, K. Focused Magnetic Stem Cell Targeting to the Retina Using Superparamagnetic Iron Oxide Nanoparticles. Cell Transplant. 21(6):1137-1148; 2012.

Cheng, K.; Malliaras, K.; Li, T.-S.; Sun, B.; Houde, C.; Galang, G.; Smith, J.; Matsushita, N.; Marbán, E. Magnetic Enhancement of Cell Retention, Engraftment, and Functional Benefit After Intracoronary Delivery of Cardiac-Derived Stem Cells in a Rat Model of Ischemia/Reperfusion. Cell Transplant. 21(6):1121-1135; 2012.

add to favorites email to friend print save as pdf

Related Stories

Scientists successfully awaken sleeping stem cells

Mar 18, 2008

Scientists at Schepens Eye Research Institute have discovered what chemical in the eye triggers the dormant capacity of certain non-neuronal cells to transform into progenitor cells, a stem-like cell that can generate new ...

Recommended for you

Growing a blood vessel in a week

Oct 24, 2014

The technology for creating new tissues from stem cells has taken a giant leap forward. Three tablespoons of blood are all that is needed to grow a brand new blood vessel in just seven days. This is shown ...

Testing time for stem cells

Oct 24, 2014

DefiniGEN is one of the first commercial opportunities to arise from Cambridge's expertise in stem cell research. Here, we look at some of the fundamental research that enables it to supply liver and pancreatic ...

Team finds key signaling pathway in cause of preeclampsia

Oct 23, 2014

A team of researchers led by a Wayne State University School of Medicine associate professor of obstetrics and gynecology has published findings that provide novel insight into the cause of preeclampsia, the leading cause ...

Rapid test to diagnose severe sepsis

Oct 23, 2014

A new test, developed by University of British Columbia researchers, could help physicians predict within an hour if a patient will develop severe sepsis so they can begin treatment immediately.

User comments