At the right place at the right time—new insights into muscle stem cells

September 17, 2012

Muscles have a pool of stem cells which provides a source for muscle growth and for regeneration of injured muscles. The stem cells must reside in special niches of the muscle for efficient growth and repair.

The developmental biologists Dr. Dominique Bröhl and Prof. Carmen Birchmeier of the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have elucidated how these stem cells colonize these niches. At the same time, they show that the stem cells weaken when, due to a mutation, they locate outside of the muscle fibers instead of in their stem cell niches.

Muscle stem cells, also called , colonize a niche that is located between the plasma membrane of the muscle cell and the surrounding basal lamina. Already in newborns these niches contain satellite cells from which both muscle cells and new stem cells can be generated.

Weakened stem cells

In the present study Dr. Bröhl and Professor Birchmeier showed that mouse muscle progenitor cells lacking components of the cannot colonize their niche. Instead the muscle progenitor cells locate in tissue between the . The view this as the cause for the weakening of the muscles. The stem cells that are "in the wrong place" are no longer as potent as they originally were and hardly contribute to muscle growth.

In addition, the Notch signaling pathway has a second function in muscle development. It prevents the differentiation of stem cells into muscle cells through suppression of the muscle developmental factor MyoD and thus ensures that there will always be a pool of stem cells for muscle repair and regeneration. In the future this work could gain in importance for research on and muscle weakness.

More information: Colonization of the Satellite Cell Niche by Skeletal Muscle Progenitor Cells Depends on Notch Signals, Developmental Cell, http://dx.doi.org/10.1016/j.devcel.2012.07.014

Related Stories

Recommended for you

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.