Vision cells, not brain, to blame for colour blindness

The real culprits of colour blindness are vision cells rather than unusual wiring in the eye and brain, recent research has shown.

The discovery brings scientists a step closer to restoring full for people who are colour blind – a condition that affects close to two million Australians, says Professor Paul Martin from The and The University of Sydney.

It may also help pave the way for an answer to one of the most common causes of blindness – age-related macular degeneration (AMD), which accounts for half of the cases in Australia.

"There are millions of cones in our eyes – vision cells that pick up bright light and allow us to see colour," Prof. Martin says. "They are nicknamed red, green and blue cones because they are sensitive to different .

"We now know that in the macular region of the eye, each cone has its own 'private line' into the and the brain. Just as a painter can mix from three tubes of paint to produce a wide and vivid palette, our brain uses the 'private lines' from the three cone types to create thousands of colour sensations.

Scientists previously thought that full colour vision depends on specialised nerve wiring in the eye and brain, but animal studies show that the wiring is identical for monkeys whether they have normal or abnormal colour vision, Prof. Martin says.

"This tells us that there's nothing wrong in the brain – it's only working with the signals that it receives on the 'private lines'," he says. "So the only difference in normal and abnormal colour vision is caused by the first stage of sight, which points to faulty cones. Either they have failed to develop, or else they are picking up abnormal wavelengths.

"Now that we know faulty wiring isn't the cause, we can concentrate on fixing the cones, which are controlled by genes – and thus prone to mutation or mistakes during . There are already promising results from gene therapy as a way to restore full colour vision in colour blind monkeys."

"While we have still have some way to go, the benefits of this gene therapy – if successful – can potentially extend beyond providing complete colour vision," he says.

"If we can get these genes to work in human eyes, it means that the same approach might be possible for other visual problems – including blinding diseases such as macular degeneration."

"In macular degeneration, energy supplies to the macula can't keep up with demand. So the 'private line' system must be very energy-intensive. Gene therapy could be used to turn down the cones' energy demand, or to increase energy supply from supporting cells to cone cells," Prof. Martin says.

"Together with clinical researchers at the Save Sight Institute, we are now working hard to find out exactly how many 'private lines' there are in humans. That can point us to where energy demand is highest and we can target to the right place.

"So animal research on 'private lines' for colour has given new clues for understanding one of the most important visual diseases – macular degeneration – in humans."

add to favorites email to friend print save as pdf

Related Stories

Human vision inadequate for research on bird vision

May 12, 2008

The most attractive male birds attract more females and as a result are most successful in terms of reproduction. This is the starting point of many studies looking for factors that influence sexual selection in birds. However, ...

Thyroid affects color vision

Mar 29, 2011

What part does the thyroid gland have in vision? Thyroid hormone is crucially involved in controlling which visual pigment is produced in the cones. Previously, it was assumed that the colour sensitivity of ...

New research eyes off colourful reef fish

Feb 11, 2010

(PhysOrg.com) -- Most people wouldn't give a second thought to the inner workings of the fish eye. But research by University of Queensland scientists is unlocking the secrets hidden behind these fishy lenses. ...

Recommended for you

HIV/AIDS drugs could be repurposed to treat AMD

Nov 20, 2014

A landmark study published today in the journal Science by an international group of scientists, led by the laboratory of Dr. Jayakrishna Ambati, professor & vice chair of the Department of Ophthalmology & Visu ...

New laser therapy helps slow macular degeneration

Nov 19, 2014

(Medical Xpress)—A new, low impact low energy laser treatment for patients with early age-related macular degeneration (AMD) has produced positive results by reducing indicators of the disease.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.