Alpha wave blocks your mind for distraction, but not continuously

Alpha waves were long ignored, but gained interest of brain researchers recently. Electrical activity of groups of brain cells results in brain waves with different amplitudes. The so called alpha wave, a slow brain wave with a cycle of 100 milliseconds seems to play a key role in suppressing irrelevant brain activity. The current hypothesis is that this alpha wave is associated with pulses of inhibition (every 100 ms) in the brain.

Mathilde Bonnefond and Ole Jensen (Radboud University Nijmegen, The Netherlands) discovered that when distracting information can be anticipated in time there is an increase of the power of this alpha wave just before the distracter. Furthermore, the brain is able to precisely control the alpha wave so that the pulse of inhibition is maximal when the distracter appears. Indeed, between pulses of inhibition, there is still a window where the brain is excitable. 'It is like briefly opening a door to look what's happening outside. This enables us to detect an unexpected but important or dangerous event. But to avoid to be distracted by completely irrelevant information, it is better if the inhibition is active when a distracter is presented. It could be seen as a mechanism slamming the door of the brain on intruders'. The results are published by the scientific journal at October 4.

The researchers designed an experiment in which timing of suppressing information was crucial for performance. The subjects were trained to do a in a strict rhythm. Those subjects that were able to synchronize their alpha activity with the rhythm in which irrelevant distracters were presented had the highest score on the task. This is an unconscious process by the way. The researchers presume that the ability to adjust alpha activity to the expected distracting information might play a role when we actively sample the environment.

Experimental set up

Eighteen volunteers were tested with a non-invasive brain-wave recording technique, magnetoencephalography (MEG). The volunteers had to do a working memory task (i.e. maintaining some information in their memory over a period of a few seconds) during which the waves generated by their brain were recorded. In each trial, they had to remember four letters presented on a screen every one second. After that, a distracter was briefly presented. The distracter was either another letter (strong distracter) or a symbol (weak distracter). Participants were asked to ignore the distracter (control experiments were ran to make sure they followed the instructions). One second after the distracter, another letter was briefly presented and the participants had to determine whether this letter was similar to one of the four letters they had to remember earlier

The experiment consisted of blocks of trials with only one type of distracter (strong or weak) presented after the letters to remember in each trial. Very importantly, the time before the distracter was always the same so that the subjects could anticipate the timing of presentation of the distracter. The were stronger before the strong distracters than before the weak distracters, confirming that these waves close our brain for distracting information.

More information: Bonnefond et al.: 'Alpha oscillations serve to protect working memory maintenance against anticipated distracters', Current Biology, print issue October 23, 2012, online October 4

add to favorites email to friend print save as pdf

Related Stories

Noisy surroundings take toll on short-term memory

Sep 06, 2012

Have you ever noticed how tiresome it can be to follow a conversation at a noisy party? Rest assured: this is not necessarily due to bad hearing – although that might make things worse. Scientists at the ...

Brain wave patterns can predict blunders, new study finds

Mar 23, 2009

From spilling a cup of coffee to failing to notice a stop sign, everyone makes an occasional error due to lack of attention. Now a team led by a researcher at the University of California, Davis, in collaboration ...

Recommended for you

New ALS associated gene identified using innovative strategy

21 hours ago

Using an innovative exome sequencing strategy, a team of international scientists led by John Landers, PhD, at the University of Massachusetts Medical School has shown that TUBA4A, the gene encoding the Tubulin Alpha 4A protein, ...

Can bariatric surgery lead to severe headache?

21 hours ago

Bariatric surgery may be a risk factor for a condition that causes severe headaches, according to a study published in the October 22, 2014, online issue of Neurology, the medical journal of the American Academy of Neurol ...

Bipolar disorder discovery at the nano level

21 hours ago

A nano-sized discovery by Northwestern Medicine scientists helps explain how bipolar disorder affects the brain and could one day lead to new drug therapies to treat the mental illness.

User comments

Adjust slider to filter visible comments by rank

Display comments: newest first

gmurphy
not rated yet Oct 10, 2012
One would think that the natural environment would not contain much by way of such rigidly defined cycles.