Putting a block on neuropathic pain before it starts

October 9, 2012

Using tiny spheres filled with an anesthetic derived from a shellfish toxin, researchers at Boston Children's Hospital and the Massachusetts Institute of Technology have developed a way to delay the rise of neuropathic pain, a chronic form of pain that arises from flawed signals transmitted by damaged nerves.

The method could potentially allow doctors to stop the cascade of events by which tissue or evolve into neuropathic pain, which affects 3.75 million children and adults in the United States alone.

The researchers, led by Daniel Kohane, MD, PhD, of Boston Children's Department of Anesthesia and Robert Langer, ScD, of MIT, reported the results of animal studies online the week of October 8 in the .

Neuropathic pain can be long lasting and debilitating. Caused by shingles, nerve trauma, cancer and other conditions, it arises because damaged nerves send unusual signals to the spinal cord and the brain. The constant signaling effectively reprograms the to react to any stimulus to the affected area, or even no stimulus at all, by triggering unpleasant sensations ranging from tingling and numbness to shooting, burning pain.

"Currently neuropathic pain is treated with systemic medications, but there has been significant interest in using powerful local anesthetics to block aberrant nerve discharges from the site of injury to prevent the onset of neuropathic pain," said Kohane. "Others have tried with varying degrees of success to do this in animal models using a variety of methods, but if applied clinically, those methods would require surgical intervention or could be toxic to tissues. We want to avoid both of those concerns."

The team's method combines saxitoxin, a powerful , and dexamethasone, which prolongs saxitoxin's effects. The two are packaged in liposomes—lipid spheres about 5.5 micrometers wide, or a bit smaller than a —for nontoxic delivery to the site of nerve or tissue damage.

To assess whether the anesthetic-loaded liposomes (called SDLs for saxitoxin liposomes) might work as a potential treatment for neuropathic pain, Kohane and Langer—along with Sahadev Shankarappa, MBBS, MPH, PhD (a fellow in the Kohane lab) and others—attempted to use them to block the development of signs of neuropathy in an of sciatic nerve injury. They found that a single injection of SDLs had a very mild effect, delaying the onset of neuropathic pain by about two days compared to no treatment. Three injections of SDLs at the site of injury over the course of 12 days, however, delayed the onset of pain by about a month.

The signal blockade mounted by the SDLs also appeared to prevent reprogramming of the central nervous system. The team noted that astrocytes in the spine, which help maintain the pain signaling in neuropathic patients, showed no signs of pain-related activation five and 60 days after injury in animals treated with SDLs.

"Ultimately we'd like to develop a way to reversibly block nerve signaling for a month with a single injection without causing additional nerve damage," Kohane explained. "For the moment, we're trying to refine our methods so that we can get individual injections to last longer and figure out how to generalize the method to other models of neuropathic .

"We also need to see whether it is safe to block activity in this way for this long," he continued. "We don't want to inadvertently trade one problem for another. But we think that this approach could be fruitful for preventing and treating what is really a horrible condition."

Explore further: Protein found that may provide relief from neuropathic pain

Related Stories

Protein found that may provide relief from neuropathic pain

December 5, 2007

Neuropathic pain is caused by injury to the peripheral nerves in diseases such as HIV/AIDS, shingles, and cancer or in repetitive motion disorders and trauma, and does not respond well to conventional pain-relieving drugs.

Long-lasting nerve block could change pain management

April 14, 2009

(PhysOrg.com) -- Harvard researchers at Children’s Hospital Boston have developed a slow-release anesthetic drug-delivery system that could potentially revolutionize treatment of pain during and after surgery, and may also ...

New insight into pain mechanisms

April 25, 2012

(Medical Xpress) -- Researchers in the UCL Wolfson Institute for Biomedical Research have made a discovery which could help the development of analgesic drugs able to treat nerve damage-related pain.

How does exercise affect nerve pain?

June 1, 2012

Exercise helps to alleviate pain related to nerve damage (neuropathic pain) by reducing levels of certain inflammation-promoting factors, suggests an experimental study in the June issue of Anesthesia & Analgesia, official ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.