Researchers a step closer to controlling inflammation in MS

October 4, 2012

(Medical Xpress)—A University of Adelaide researcher has published results that suggest a possible new mechanism to control multiple sclerosis (MS).

Dr Iain Comerford from the University's School of Molecular and Biomedical Science earned a three-year fellowship from Australia to work on this project. It is directed towards understanding how specific enzymes in cells of the immune system regulate immune cell activation and migration.

Along with his colleagues, Professor Shaun McColl and PhD students Wendel Litchfield and Ervin Kara, he focused on a molecule known as PI3Kgamma, which is involved in the activation and movement of .

"There's already been worldwide interest in PI3Kgamma in relation to other human inflammatory disorders, such as diabetes and , and our study links this molecule and MS," said Dr Comerford, who is a Multiple Sclerosis Research Australia Fellow at the University of Adelaide.

Dr Comerford and his colleagues have now shown that this molecule is crucial for the development of experimental autoimmune encephalitis (EAE) in an developed as a standard laboratory system for studying MS.

The team showed that a , which knocked out that particular molecule, resulted in a high resistance to the development of EAE and therefore protected against the nervous system damage typical of multiple sclerosis.

When the molecule is present, severe damage to the insulating myelin in the central nervous system was evident, resulting in inflammation in the spinal cord and myelin loss.

Following up on this result, the team then used an orally active drug that blocks the activity of the molecule PI3Kgamma at the first signs of disease onset. The drug even suppressed the development of EAE and reversed clinical signs of the disease.

"Our results so far have been very promising," Dr Comerford said.

"We've shown that by blocking PI3Kgamma, we can reduce the activation of self-reactive immune cells, reduce the release of inflammation-inducing from immune cells, and also result in a dramatic reduction in the movement of into the central nervous system.

"Our hope is that future therapies for MS might target this molecule, which could very specifically dampen the damaging inflammation in the .

"It will now be crucial to determine whether targeting these molecules could be a safe and effective way to treat MS in humans," Dr Comerford said.

Mr Jeremy Wright, CEO of MS Research Australia said: "It is very rewarding to see that MSRA has been able to support these exciting developments by a young up-and-coming researcher. We will await his further results with great interest," he said.

The research results were published recently in the online journal PLOS ONE.

Explore further: Caffeine prevents multiple sclerosis-like disease in mice

More information: www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0045095

Related Stories

Caffeine prevents multiple sclerosis-like disease in mice

April 7, 2008

Mice given caffeine equivalent to a human drinking six to eight cups of coffee a day were protected from developing experimental autoimmune encephalomyelitis (EAE), the animal model for the human disease Multiple Sclerosis ...

Imaging study provides new view of multiple sclerosis

September 23, 2010

Scientists have uncovered an alternative source for some of the damage associated with multiple sclerosis (MS), an incurable neuroinflammatory disorder. The research, published online by Cell Press on September 23rd in the ...

Blocking crucial molecule could help treat multiple sclerosis

April 24, 2011

Reporting in Nature Immunology, Jefferson neuroscientists have identified a driving force behind autoimmune diseases such as multiple sclerosis (MS), and suggest that blocking this cell-signaling molecule is the first step ...

Multiple sclerosis: Damaged myelin not the trigger

February 27, 2012

Damaged myelin in the brain and spinal cord does not cause the autoimmune disease multiple sclerosis (MS), neuroimmunologists from the University of Zurich have now demonstrated in collaboration with researchers from Berlin, ...

Receptor may hold key to multiple sclerosis treatment

June 11, 2012

(Medical Xpress) -- A receptor recently discovered to control the movement of immune cells across central nervous system barriers (including the blood-brain barrier) may hold the key to treating multiple sclerosis (MS), a ...

Recommended for you

Basic research fuels advanced discovery

August 26, 2016

Clinical trials and translational medicine have certainly given people hope and rapid pathways to cures for some of mankind's most troublesome diseases, but now is not the time to overlook the power of basic research, says ...

New method creates endless supply of kidney precursor cells

August 25, 2016

Salk Institute scientists have discovered the holy grail of endless youthfulness—at least when it comes to one type of human kidney precursor cell. Previous attempts to maintain cultures of the so-called nephron progenitor ...

New avenue for understanding cause of common diseases

August 25, 2016

A ground-breaking Auckland study could lead to discoveries about many common diseases such as diabetes, cancer and dementia. The new finding could also illuminate the broader role of the enigmatic mitochondria in human development.

Strict diet combats rare progeria aging disorders

August 25, 2016

Mice with a severe aging disease live three times longer if they eat thirty percent less. Moreover, they age much healthier than mice that eat as much as they want. These are findings of a joint study being published today ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.