Cortex development depends on a protein

As outlined in a study published in Developmental Cell, researchers have discovered a novel function for p27 in the control of interneuron migration in the developing cerebral cortex.

The cerebral cortex is one of the most intricate regions of the brain whose formation requires the migration and integration of two classes of neurons: the projection neurons and the . These neurons are born in different places and use distinct migration modes to reach the cortex. While several signaling pathways involving various molecules have already been associated with projection neuron migration, the molecular mechanisms that control interneurons migration remain elusive.

In this study, researchers unveiled a novel activity of p27—a protein initially described for its activity as cell cycle regulator—in dynamic remodelling of the cell skeleton. This skeleton, named cytoskeleton, underlies tangential migration of interneurons in the cerebral cortex. Juliette Godin, primary researcher states: " At the molecular level, p27 acts on two cytoskeletal components, the actin and the microtubules. It promotes nucleokinesis and branching of the through regulation of actine. In addition, it promotes microtubule polymerisation in extending neurites. Both activities are required for proper tangential migration of interneurons in the cortex".

It is worth noting that microtubules are ubiquitous components of the cytoskeleton that contribute to cell integrity as well as and cell division. These cellular processes are impaired in various neurological disorders as well as in most cancers. "Our results are of particular significance because they demonstrate for the first time that p27 is a microtubule-associated protein that promotes their polymerisation", says researcher Laurent Nguyen.

Overall, these results increase our understanding of the mechanisms that drive in the . Disruption of neuronal migration is associated with various neurological disorders characterized by mental retardation, epilepsy, learning disabilities, or autism.

More information: "p27Kip1 Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration", Developmental Cell (Advanced Online Publication 27/09/2012) - doi: 10.1016/j.devcel.2012.08.006

add to favorites email to friend print save as pdf

Related Stories

Researchers learn more about interactions in the cortex

Feb 24, 2011

To an untrained observer, the electrical storm that takes place over the brain’s neural network seems a chaotic flurry of activity. But as neuroscientists understand it, the millions of neurons are actually ...

Recommended for you

New molecule sneaks medicines across the blood/brain barrier

3 hours ago

Delivering life-saving drugs across the blood-brain barrier (BBB) might become a little easier thanks to a new report published in the November 2014 issue of The FASEB Journal. In the report, scientists describe an antibo ...

Clock gene dysregulation may explain overactive bladder

3 hours ago

If you think sleep problems and bladder problems are a fact of life in old age, you may be right. A new report appearing in the November 2014 issue of The FASEB Journal, shows that our sleep-wake cycles are genetically connec ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.