Cortex development depends on a protein

October 2, 2012

As outlined in a study published in Developmental Cell, researchers have discovered a novel function for p27 in the control of interneuron migration in the developing cerebral cortex.

The cerebral cortex is one of the most intricate regions of the brain whose formation requires the migration and integration of two classes of neurons: the projection neurons and the . These neurons are born in different places and use distinct migration modes to reach the cortex. While several signaling pathways involving various molecules have already been associated with projection neuron migration, the molecular mechanisms that control interneurons migration remain elusive.

In this study, researchers unveiled a novel activity of p27—a protein initially described for its activity as cell cycle regulator—in dynamic remodelling of the cell skeleton. This skeleton, named cytoskeleton, underlies tangential migration of interneurons in the cerebral cortex. Juliette Godin, primary researcher states: " At the molecular level, p27 acts on two cytoskeletal components, the actin and the microtubules. It promotes nucleokinesis and branching of the through regulation of actine. In addition, it promotes microtubule polymerisation in extending neurites. Both activities are required for proper tangential migration of interneurons in the cortex".

It is worth noting that microtubules are ubiquitous components of the cytoskeleton that contribute to cell integrity as well as and cell division. These cellular processes are impaired in various neurological disorders as well as in most cancers. "Our results are of particular significance because they demonstrate for the first time that p27 is a microtubule-associated protein that promotes their polymerisation", says researcher Laurent Nguyen.

Overall, these results increase our understanding of the mechanisms that drive in the . Disruption of neuronal migration is associated with various neurological disorders characterized by mental retardation, epilepsy, learning disabilities, or autism.

Explore further: Driving developing brain neurons in the right direction

More information: "p27Kip1 Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration", Developmental Cell (Advanced Online Publication 27/09/2012) - doi: 10.1016/j.devcel.2012.08.006

Related Stories

Recommended for you

Formaldehyde damages proteins, not just DNA

September 29, 2016

The capacity of formaldehyde, a chemical frequently used in manufactured goods such as automotive parts and wood products, to damage DNA, interfere with cell replication and cause cancer inspired new federal regulations this ...

Synthetic 3D-printed material helps bones regrow

September 28, 2016

A cheap and easy to make synthetic bone material has been shown to stimulate new bone growth when implanted in the spines of rats and a monkey's skull, researchers said Wednesday.

Epigenetic clock predicts life expectancy

September 28, 2016

UCLA geneticist Steve Horvath led a team of 65 scientists in seven countries to record age-related changes to human DNA, calculate biological age and estimate a person's lifespan. A higher biological age—regardless of chronological ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.