Cortex development depends on a protein

October 2, 2012

As outlined in a study published in Developmental Cell, researchers have discovered a novel function for p27 in the control of interneuron migration in the developing cerebral cortex.

The cerebral cortex is one of the most intricate regions of the brain whose formation requires the migration and integration of two classes of neurons: the projection neurons and the . These neurons are born in different places and use distinct migration modes to reach the cortex. While several signaling pathways involving various molecules have already been associated with projection neuron migration, the molecular mechanisms that control interneurons migration remain elusive.

In this study, researchers unveiled a novel activity of p27—a protein initially described for its activity as cell cycle regulator—in dynamic remodelling of the cell skeleton. This skeleton, named cytoskeleton, underlies tangential migration of interneurons in the cerebral cortex. Juliette Godin, primary researcher states: " At the molecular level, p27 acts on two cytoskeletal components, the actin and the microtubules. It promotes nucleokinesis and branching of the through regulation of actine. In addition, it promotes microtubule polymerisation in extending neurites. Both activities are required for proper tangential migration of interneurons in the cortex".

It is worth noting that microtubules are ubiquitous components of the cytoskeleton that contribute to cell integrity as well as and cell division. These cellular processes are impaired in various neurological disorders as well as in most cancers. "Our results are of particular significance because they demonstrate for the first time that p27 is a microtubule-associated protein that promotes their polymerisation", says researcher Laurent Nguyen.

Overall, these results increase our understanding of the mechanisms that drive in the . Disruption of neuronal migration is associated with various neurological disorders characterized by mental retardation, epilepsy, learning disabilities, or autism.

Explore further: Brain cell migration during normal development may offer insight on how cancer cells spread

More information: "p27Kip1 Is a Microtubule-Associated Protein that Promotes Microtubule Polymerization during Neuron Migration", Developmental Cell (Advanced Online Publication 27/09/2012) - doi: 10.1016/j.devcel.2012.08.006

Related Stories

Unraveling the ins and outs of brain development

June 10, 2011

The embryonic nervous system is a hollow tube consisting of elongated neural progenitor cells, which extend from the inner to the outer surface of the tube. In a section inside the tube called the ventricular zone (VZ), these ...

Recommended for you

New findings offer hope for diabetic wound healing

November 23, 2015

University of Notre Dame researchers have discovered a compound that accelerates diabetic wound healing, which may open the door to new treatment strategies. Non-healing chronic wounds are a major complication of diabetes, ...

'Healthy' foods differ by individual

November 19, 2015

Ever wonder why that diet didn't work? An Israeli study tracking the blood sugar levels of 800 people over a week suggests that even if we all ate the same meal, how it's metabolized would differ from one person to another. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.