A DNA-made trap may explain amyloidosis aggravation

October 9, 2012

Amyloidosis is a group of clinical syndromes characterized by deposits of amyloid fibrils throughout the body. These fibrils are formed by aggregates of proteins that have not been properly folded. Deposits of amyloid fibrils are found in a number of diseases, including Alzheimer's and Parkinson's diseases and type-2 diabetes. The amyloid deposits can be localized, as in the brain of Alzheimer's patients, or found spread through the body, as in amyloidosis related to mutations in the transthyretin gene.

The clinical meaning of is still poorly understood. Whereas in some patients these deposits are asymptomatic and found only by chance, in others they can damage multiple and be lethal. Previous research has suggested that what turns these apparently harmless amyloid fibrils into deadly toxic species is their breaking down into smaller pieces. How this process takes place and the identity of the key players involved are crucial questions to which a new study led by Dr Debora Foguel at the Medical Biochemistry Institute at the Federal University of Rio de Janeiro, in Brazil, provides enlightening answers.

It has been known for some time that amyloid fibrils trigger an inflammatory response, suggesting the involvement of the immune system in amyloidosis. In a paper to be published in print in November in the , the group led by Dr Debora Foguel asked whether this would involve neutrophils, the that first reach a damaged site.

Neutrophils protect our body against microbes by releasing, at the site of infection, a DNA-made trap rich in nuclear and antimicrobial proteins, a process known as NETosis. Once caught by this neutrophil extracellular trap (NET) microbes are trapped and killed by NET components such as e enzymes. New evidence provided by Dr Foguel's research shows that not only microbes but also amyloid fibrils can induce the release of NETs. NETs are also found at the sites of amyloid deposits in the tissues of amyloidosis patients. The study strongly indicates that amyloid fibrils are caught by NETs, which break them down into smaller fragments, mainly through the action of specific enzymes. As a side-product of this process, smaller toxic fragments that are harmful to the cells are generated.

"Our study provides the first evidence of a physiological mechanism leading to fibril fragmentation and aggravation of the disease. Thus, amyloid fibrils could be considered as a reservoir of small, ," says Dr Foguel. The study entitled "Amyloid fibrils trigger the release of neutrophil extracellular traps (NETs), causing fibril fragmentation by NET-associated elastase" also shows that the extent of NET induction by amyloidosis differs among patients, which may further explain the great variability observed among amyloidosis patients.

NETs are physiologically destroyed by special enzymes capable of digesting DNA, the so-called DNAses. Indeed, some pathogens escape NETs by releasing their own DNAses when trapped. A question now remains whether amyloidosis patients are somehow incapable of disassembling these NETs when they are no longer needed, allowing them free rein and the breakdown of the amyloid into smaller toxic pieces.

The study's results have clear implications for the etiology of , an often-deadly disease against which little progress has been made in recent years.

Explore further: Amyloid beta in the brain of individuals with Alzheimer's disease

More information: www.jbc.org/content/early/2012/08/23/jbc.M112.369942.full.pdf+html

Related Stories

Recommended for you

An accessible approach to making a mini-brain

October 1, 2015

If you need a working miniature brain—say for drug testing, to test neural tissue transplants, or to experiment with how stem cells work—a new paper describes how to build one with what the Brown University authors say ...

Tension helps heart cells develop normally in the lab

October 1, 2015

The heart is never quite at rest, and it turns out that even in a lab heart cells need a little of that tension. Without something to pull against, heart cells grown from stem cells in a lab dish fail to develop normally.

Dormant viral genes may awaken to cause ALS

September 30, 2015

Scientists at the National Institutes of Health discovered that reactivation of ancient viral genes embedded in the human genome may cause the destruction of neurons in some forms of amyotrophic lateral sclerosis (ALS). The ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.