The genetics of HIV-1 resistance

October 2, 2012

Drug resistance is a major problem when treating infections. This problem is multiplied when the infection, like HIV-1, is chronic. New research published in BioMed Central's open access journal Retrovirology has examined the genetic footprint that drug resistance causes in HIV and found compensatory polymorphisms that help the resistant virus to survive.

Currently the strategy used to treat HIV-1 infection is to prevent viral replication, measured by the number of in the blood, and to repair the immune system, assessed using CD4 count. Over the past 20 years treatment and life expectancy have vastly improved. However, due to drug resistance, complete requires an array of drugs.

For the virus drug resistance comes at a cost. In the absence of the drug the virus carrying is less 'fit' than the wild-type virus and so should not be able to replicate as efficiently. During interruptions to treatment wild-type viruses quickly predominate. However newly infected people can be drug resistant even before they have received any treatment.

Researchers from the SPREAD project have been monitoring HIV infections across Europe. This multinational team has looked at 1600 people, newly infected with HIV-1 subtype B. Almost 10% of these patients had HIV-1 harbouring transmitted drug resistance (TDR) and worryingly, when they measured and CD4 count, there was no indication that these strains of HIV-1 were weaker.

In recent years there has been much talk about polymorphisms, naturally occurring differences in the genes that are responsible for the differences between animals of the same species, for example blood groups or the ability to digest lactose in milk. They may also increase propensity for certain diseases including cancer and type 2 diabetes. But animals are not the only organisms that harbour polymorphisms – they are present in viruses as well.

By examining polymorphisms in these strains of HIV-1 the researchers discovered that certain polymorphisms in the gene coding for protease (essential for ) known to act as compensatory mechanisms, improve the 'fitness' of resistant strains, even in the absence of the drug. Kristof Theys, one of the researchers involved in the project commented, "Our worry is that over time we will be seeing more people presenting with TDR HIV-1."

Prof Anne-Mieke Vandamme, who led this study, fears "Contrary to what was expected, transmission of TDR virus may also contribute to a 'fitter' and more virulent HIV, which has important clinical implications in how we best treat these people."

Explore further: Drug designer: New tool reveals mutations that cause HIV-drug resistance

More information: Treatment-associated polymorphisms in protease are significantly associated with higher viral load and lower CD4 count in newly diagnosed drug-naive HIV-1 infected patients, Kristof Theys, et al. Retrovirology, (in press)

Related Stories

Recommended for you

Study unlocks secret of common HIV strain

October 13, 2016

A discovery that the most common variant of the HIV virus is also the "wimpiest" will help doctors better treat millions of individuals around the world suffering from the deadly disease, according to one of the world's leading ...

Children could point the way to new HIV treatments

September 29, 2016

Children with HIV who can resist the disease progressing could point the way to new treatments for HIV infection that are more widely applicable to infected adults and children alike, an international team of researchers ...

Broadly neutralizing HIV antibodies pave the way for vaccine

September 26, 2016

A small number of people infected with HIV produce antibodies with an amazing effect: Not only are the antibodies directed against the own virus strain, but also against different sub-types of HIV that circulate worldwide. ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.