The genetics of HIV-1 resistance

Drug resistance is a major problem when treating infections. This problem is multiplied when the infection, like HIV-1, is chronic. New research published in BioMed Central's open access journal Retrovirology has examined the genetic footprint that drug resistance causes in HIV and found compensatory polymorphisms that help the resistant virus to survive.

Currently the strategy used to treat HIV-1 infection is to prevent viral replication, measured by the number of in the blood, and to repair the immune system, assessed using CD4 count. Over the past 20 years treatment and life expectancy have vastly improved. However, due to drug resistance, complete requires an array of drugs.

For the virus drug resistance comes at a cost. In the absence of the drug the virus carrying is less 'fit' than the wild-type virus and so should not be able to replicate as efficiently. During interruptions to treatment wild-type viruses quickly predominate. However newly infected people can be drug resistant even before they have received any treatment.

Researchers from the SPREAD project have been monitoring HIV infections across Europe. This multinational team has looked at 1600 people, newly infected with HIV-1 subtype B. Almost 10% of these patients had HIV-1 harbouring transmitted drug resistance (TDR) and worryingly, when they measured and CD4 count, there was no indication that these strains of HIV-1 were weaker.

In recent years there has been much talk about polymorphisms, naturally occurring differences in the genes that are responsible for the differences between animals of the same species, for example blood groups or the ability to digest lactose in milk. They may also increase propensity for certain diseases including cancer and type 2 diabetes. But animals are not the only organisms that harbour polymorphisms – they are present in viruses as well.

By examining polymorphisms in these strains of HIV-1 the researchers discovered that certain polymorphisms in the gene coding for protease (essential for ) known to act as compensatory mechanisms, improve the 'fitness' of resistant strains, even in the absence of the drug. Kristof Theys, one of the researchers involved in the project commented, "Our worry is that over time we will be seeing more people presenting with TDR HIV-1."

Prof Anne-Mieke Vandamme, who led this study, fears "Contrary to what was expected, transmission of TDR virus may also contribute to a 'fitter' and more virulent HIV, which has important clinical implications in how we best treat these people."

More information: Treatment-associated polymorphisms in protease are significantly associated with higher viral load and lower CD4 count in newly diagnosed drug-naive HIV-1 infected patients, Kristof Theys, et al. Retrovirology, (in press)

add to favorites email to friend print save as pdf

Related Stories

Mutation breaks HIV's resistance to drugs

Sep 13, 2012

The human immunodeficiency virus (HIV) can contain dozens of different mutations, called polymorphisms. In a recent study an international team of researchers, including MU scientists, found that one of those mutations, called ...

Herpes drug inhibits HIV replication, but with a price

Nov 06, 2008

The anti-herpes drug acyclovir can also directly slow down HIV infection by targeting the reverse transcriptase (RT) enzyme, researchers report in this week's JBC. This beneficial effect does pose a risk though, as HIV-in ...

New HIV test may predict drug resistance

Jan 07, 2007

Researchers at Duke University Medical Center have developed a highly sensitive test for identifying which drug-resistant strains of HIV are harbored in a patient's bloodstream.

Resistant HIV quickly hides in infants' cells

Apr 30, 2007

New evidence shows that drug-resistant virus passed from mother-to-child can quickly establish itself in infants’ CD4+ T cells where it can hide for years, likely limiting their options for future treatment. The study is ...

Recommended for you

How we got ahead in HIV control

Jul 25, 2014

When AIDS first emerged in the early 1980s, HIV infection was a death sentence. But a global effort has ensured this is no longer the case for a growing number of people.

User comments