Putting a 'HEX' on muscle regeneration

October 1, 2012

A complex genetic regulatory network mediates the regeneration of adult skeletal muscles. In this issue of the Journal of Clinical Investigation, researchers at the State University of New York Downstate Medical Center in Brooklyn report that HEXIM1, a protein that regulates gene transcription, is important for skeletal muscle regeneration in mice.

M.A.Q. Saddiqui and colleagues found that HEXIM1 blocks gene expression that is required for muscle regeneration after injury.

Mice with a 50% reduction in HEXIM1 exhibited greater muscle mass and function after injury compared to mice with a normal amount of the gene.

These results indicate that HEXIM1 may be a in degenerative muscle diseases.

Explore further: Crucial role for molecule in muscle development

More information: HEXIM1 controls satellite cell expansion to regulate skeletal muscle regeneration, Journal of Clinical Investigation, 2012.

Related Stories

Race to nerve regeneration: faster is better

October 3, 2011

A team of researchers led by Clifford Woolf and Chi Ma, at Children's Hospital Boston and Harvard Medical School, Boston, has identified a way to accelerate the regeneration of injured peripheral nerves in mice such that ...

'Hulk' protein, Grb10, controls muscle growth

August 30, 2012

Scientists have moved closer toward helping people grow big, strong muscles without needing to hit the weight room. Australian researchers have found that by blocking the function of a protein called Grb10 while mice were ...

Recommended for you

Researchers grow retinal nerve cells in the lab

November 30, 2015

Johns Hopkins researchers have developed a method to efficiently turn human stem cells into retinal ganglion cells, the type of nerve cells located within the retina that transmit visual signals from the eye to the brain. ...

Shining light on microbial growth and death inside our guts

November 30, 2015

For the first time, scientists can accurately measure population growth rates of the microbes that live inside mammalian gastrointestinal tracts, according to a new method reported in Nature Communications by a team at the ...

Functional human liver cells grown in the lab

November 26, 2015

In new research appearing in the prestigious journal Nature Biotechnology, an international research team led by The Hebrew University of Jerusalem describes a new technique for growing human hepatocytes in the laboratory. ...

Gut microbes signal to the brain when they are full

November 24, 2015

Don't have room for dessert? The bacteria in your gut may be telling you something. Twenty minutes after a meal, gut microbes produce proteins that can suppress food intake in animals, reports a study published November 24 ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.