Length matters in gene expression

October 2, 2012 by Lisbeth Heilesen

A research team at Aarhus University reveals a surprising interplay between the ends of human genes: If a protein-coding gene is too short it becomes inactive! The findings also explain how some short genes have adapted to circumvent this handicap.

Human genomes harbour thousands of genes, each of which gives rise to proteins when it is active. But which inherent features of a gene determine its activity? Postdoctoral Scholar Pia Kjølhede Andersen and Senior Researcher Søren Lykke-Andersen from the Danish National Research Foundation's Centre for mRNP Biogenesis and Metabolism have now found that the distance between the gene start, termed the '', and the gene end, the 'terminator', is crucial for the activity of a protein-coding gene. If the distance is too short, the gene is transcriptionally repressed and the output is therefore severely decreased. This finding outlines a completely new functional interplay between gene ends.

Small genes utilise specialised terminators

Fortunately, most -coding genes are long and are therefore not repressed by this mechanism. However, some genes, e.g. '-dependent histone genes', are very short. How do such genes express their information at all? Interestingly, many of these differ from the longer protein-coding genes by containing specialised terminators. And in fact, if such a specialised terminator replaces a normal terminator in a short gene context, the short gene is no longer transcriptionally repressed. It therefore appears that naturally occurring short genes have evolved 'their own' terminators to achieve high .

The new findings add to a complex molecular network of intragenic communication and help us to understand the basic function of genes.

The researchers behind the results that have just been published in the international journal Genes & Development are affiliated with the Danish National Research Foundation's Centre for mRNP Biogenesis and Metabolism at the Department of Molecular Biology and Genetics, Aarhus University.

More information: Promoter-proximal polyadenylation sites reduce transcription activity, genesdev.cshlp.org/content/26/19/2169.full

Related Stories

Recommended for you

New class of RNA tumor suppressors identified

November 23, 2015

A pair of RNA molecules originally thought to be no more than cellular housekeepers are deleted in over a quarter of common human cancers, according to researchers at the Stanford University School of Medicine. Breast cancer ...

Batten disease may benefit from gene therapy

November 11, 2015

In a study of dogs, scientists showed that a new way to deliver replacement genes may be effective at slowing the development of childhood Batten disease, a rare and fatal neurological disorder. The key may be to inject viruses ...

Molecular clocks control mutation rate in human cells

November 9, 2015

Every cell in the human body contains a copy of the human genome. Through the course of a lifetime all cells are thought to acquire mutations in their genomes. Some of the mutational processes generating these mutations do ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.