New merciful treatment method for children with brain tumors

October 15, 2012

Children who undergo brain radiation therapy run a significant risk of suffering from permanent neurocognitive adverse effects. These adverse effects are due to the fact that the radiation often encounters healthy tissue. This reduces the formation of new cells, particularly in the hippocampus – the part of the brain involved in memory and learning.

Researchers at the University of Gothenburg's Sahlgrenska Academy have used a model study to test newer radiation therapy techniques which could reduce these harmful adverse effects. The researchers based their study on a number of paediatric patients who had undergone conventional radiation treatment for medulloblastoma, a form of that almost exclusively affects children, and simulated treatment plans using proton therapy techniques and newer photon therapy techniques.

Each treatment plan was personalised by physician Malin Blomstrand, physicist Patrik Brodin and their colleagues. The results show that the risk of neurocognitive adverse effects can be reduced significantly using the new radiation treatment techniques, particularly .

"This could mean a better quality of life for children who are forced to undergo therapy," says Malin Blomstrand.

Explore further: IMRT cuts GI side effects from prostate cancer in half vs. 3D-CRT

More information: The article "Estimated clinical benefit of protecting neurogenesis in the developing brain during radiation therapy for pediatric medulloblastoma" will be published in the journal Neuro-Oncology.

Related Stories

Recommended for you

Combination therapy can prevent cytostatic resistance

November 26, 2015

Researchers at Karolinska Institutet have found a new way of preventing resistance to cytostatics used in the treatment of cancers such as medulloblastoma, the most common form of malignant brain tumour in children. The promising ...

Forecasting the path of breast cancer in a patient

November 23, 2015

USC researchers have developed a mathematical model to forecast metastatic breast cancer survival rates using techniques usually reserved for weather prediction, financial forecasting and surfing the Web.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.