Researchers develop neuroimaging technique capturing cocaine's devastating effect on brain blood flow

Stony Brook University Biomedical Engineering Professors Drs. Yingtian Pan, left, and Congwu Du, developed a novel 3D optical Doppler imaging tomography technique that captures the effects of cocaine restricting the blood supply in brain blood vessels.

(Medical Xpress)—Researchers from the Department of Biomedical Engineering at Stony Brook University have developed a high-resolution, 3D optical Doppler imaging tomography technique that captures the effects of cocaine restricting the blood supply in vessels – including small capillaries – of the brain. The study, reported in Molecular Psychiatry, and with images on the journal's October 2012 cover, illustrates the first use of the novel neuroimaging technique and provides evidence of cocaine-induced cerebral microischemia, which can cause stroke.

Stroke is one of the most serious of cocaine abuse. (CBF) is disrupted due to the vasoactive effects of cocaine, and research has shown that the process contributes to stroke in cocaine abusers. An effective treatment has yet to be discovered because of minimal knowledge on the underlying mechanisms that cause cerebrovascular changes resulting from . Current neuroimaging methods that could reveal clues to underlying mechanisms that cause cocaine-induced restricted CBF, such as and computed tomography angiography, are limited in scope. The Stony Brook team's neuroimaging technique offers a promising method to investigate structural changes in the small neurovascular networks of the brain that may be implicated in stroke.

In "Cocaine-induced cortical microischemia in the rodent brain: ," the researchers discovered that cocaine administered in doses equivalent to those normally taken by abusers caused constriction in blood vessels that inhibited CBF for varying lengths of time. Brain arteries, veins, and even , the smallest vessels, were affected by the doses. CBF was markedly decreased within just two-to-three minutes after drug administration. In some vessels, a decrease in CBF reached 70 percent. Recovery time for the vessels varied. Cocaine interrupted CBF in some arteriolar branches for more than 45 minutes. This effect became more pronounced after repeated cocaine administration.

"Our study revealed evidence of cocaine-induced cerebral microischemic changes in multiple experimental models, and we were able to clearly image the process and vasoactive effects at a microvascular level," said study Principal Investigator Yingtian Pan, PhD, Professor, Department of Biomedical Engineering, Stony Brook University. "These clinical changes jeopardize oxygen delivery to cerebral tissue making it vulnerable to ischemia and neuronal death."

The study reflects the collaborative research of Dr. Pan and Co-Principal Investigator Dr. Congwu Du, Associate Professor, Department of Biomedical Engineering at Stony Brook University, and Dr. Nora D. Volkow, M.D., Director of the National Institutes of Health's (NIH) National Institute on Drug Abuse. They point out that the types of cocaine-induced microischemic changes that occurred in the brain model are likely a contributor to neurotoxic effects, and they could underlie some of the neurological complications commonly experienced by cocaine abusers. These include various sensory changes, facial paralysis, numbness, and partial to full and irreversible paralysis.

More information: www.nature.com/mp/journal/v17/… 10/covers/index.html

Related Stories

Cocaine cravings are studied

Jun 15, 2006

U.S. scientists say they have found the brain chemistry that underlies "cue-induced" craving in cocaine addicts.

New mechanism underlying cocaine addiction discovered

Jan 07, 2010

Researchers have identified a key epigenetic mechanism in the brain that helps explain cocaine's addictiveness, according to research funded by the National Institute on Drug Abuse (NIDA), part of the National Institutes ...

Abnormal brain structure linked to chronic cocaine abuse

Jun 21, 2011

Researchers at the University of Cambridge have identified abnormal brain structures in the frontal lobe of cocaine users' brains which are linked to their compulsive cocaine-using behaviour. Their findings were published ...

Recommended for you

Family dinners reduce effects of cyberbullying in adolescents

3 hours ago

Sharing regular family meals with children may help protect them from the effects of cyberbullying, according to a study by McGill professor Frank Elgar, Institute for Health and Social Policy. Because family meal times represent ...

The Edwardians were also fans of brain training

9 hours ago

Brain-training programmes are all the rage. They are part of a growing digital brain-health industry that earned more than US$1 billion in revenue in 2012 and is estimated to reach US$6 billion by 2020. The extent to which they actually improve brain function re ...

Report advocates improved police training

Aug 29, 2014

A new report released yesterday by the Mental Health Commission of Canada identifies ways to improve the mental health training and education that police personnel receive.

User comments