Squeezing ovarian cancer cells to predict metastatic potential

by Jason Maderer
An AFM, holding a microscale cantilever, is positioned just above a petri dish filled with ovarian cancer cells. Credit: Georgia Institute of Technology

(Medical Xpress)—New Georgia Tech research shows that cell stiffness could be a valuable clue for doctors as they search for and treat cancerous cells before they're able to spread. The findings, which are published in the journal PLoS One, found that highly metastatic ovarian cancer cells are several times softer than less metastatic ovarian cancer cells.

Assistant Professor Todd Sulchek and Ph.D. student Wenwei Xu used a process called (AFM) to study the mechanical properties of various ovarian cell lines. A soft mechanical probe "tapped" healthy, malignant and metastatic ovarian cells to measure their stiffness.

"In order to spread, must push themselves into the bloodstream. As a result, they must be highly deformable and softer," said Sulchek, a faculty member in the George W. Woodruff School of Mechanical Engineering. "Our results indicate that cell stiffness may be a useful biomarker to evaluate the relative metastatic potential of ovarian and perhaps other types of cancer cells."

Just as previous studies on other types of epithelial cancers have indicated, Sulchek also found that cancerous ovarian cells are generally softer and display lower intrinsic variability in cell stiffnesss than non-.

A triangular cantilever is positioned just over a metastatic ovarian cancer cell while preparing to indent and measure the stiffness. Credit: Georgia Institute of Technology

Sulchek's lab partnered with the molecular cancer lab of Biology Professor John McDonald, who is also director of Georgia Tech's newly established Integrated Cancer Research Center.

"This is a good example of the kinds of discoveries that only come about by integrating skills and knowledge from traditionally diverse fields such as molecular biology and bioengineering," said McDonald. "Although there are a number of developing methodologies to identify circulating cancer cells in the blood and other body fluids, this technology offers the added potential to rapidly determine if these cells are highly metastatic or relatively benign."

Sulchek and McDonald believe that, when further developed, this technology could offer a huge advantage to clinicians in the design of optimal chemotherapies, not only for ovarian cancer patients but also for patients of other types of cancer.

More information: dx.plos.org/10.1371/journal.pone.0046609

Related Stories

Ovarian cancer stem cells targeted in new research

Oct 05, 2012

Ovarian cancer takes the lives of nearly 900 Australian women each year. It's called the silent killer because by the time most cases are detected, the cancer has spread to other vital organs throughout the abdominal area.

Recommended for you

Putting the brakes on cancer

Dec 19, 2014

A study led by the University of Dundee, in collaboration with researchers at our University, has uncovered an important role played by a tumour suppressor gene, helping scientists to better understand how ...

Peanut component linked to cancer spread

Dec 19, 2014

Scientists at the University of Liverpool have found that a component of peanuts could encourage the spread and survival of cancer cells in the body.

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.