Plaque build-up in your brain may be more harmful than having Alzheimer's gene

October 15, 2012

A new study shows that having a high amount of beta amyloid or "plaques" in the brain associated with Alzheimer's disease may cause steeper memory decline in mentally healthy older people than does having the APOE ɛ4 allele, also associated with the disease. The study is published in the October 16, 2012, print issue of Neurology, the medical journal of the American Academy of Neurology.

"Our results show that plaques may be a more important factor in determining which people are at greater risk for cognitive impairment or other memory diseases such as Alzheimer's disease," said study author Yen Ying Lim, MPsych, with the University of Melbourne in Victoria, Australia. "Unfortunately, testing for the is easier and much less costly than conducting amyloid imaging."

For the study, 141 people with an average age of 76 who were free of any problems in memory and thinking underwent PET and were tested for the . Their memory and thinking was then tracked over the following year and a half, using a set of computer-based cognitive assessments that were based on playing card games and remembering word lists.

The study found that after a year and a half, people who had more brain plaques at the start of the study had up to 20 percent greater decline on the computer based assessments of memory than did those who had fewer . The study also found that while carriers of the APOE ε4 allele also showed greater decline on the memory assessments than those who did not have the allele, carrying the ε4 allele did not change the decline in memory related to the plaques.

"Our finding that brain plaque-related can occur while people still have normal memory and thinking shows that these plaque-related brain changes can be detected and measured while older people are still healthy. This provides an enormous opportunity for understanding the development of early Alzheimer's disease and even a sound basis for the assessment of plaque-targeting therapies," said Lim.

Explore further: Malfunctioning protein a cause of Alzheimer's plaques

Related Stories

Malfunctioning protein a cause of Alzheimer's plaques

June 30, 2011

(Medical Xpress) -- In a new study published in Science Translational Medicine, scientists from the Washington University School of Medicine in St Louis reveal their discovery of a protein made by an Alzheimer’s gene ...

Recommended for you

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...

Wireless sensor enables study of traumatic brain injury

November 23, 2015

A new system that uses a wireless implant has been shown to record for the first time how brain tissue deforms when subjected to the kind of shock that causes blast-induced trauma commonly seen in combat veterans.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.