Prion protein hints at role in aiding learning and memory

October 16, 2012

Scientists from the University of Leeds have found that the protein called prion helps our brains to absorb zinc, which is believed to be crucial to our ability to learn and the wellbeing of our memory.

The findings published today in Nature Communications show that prion protein regulates the amount of in the brain by helping cells absorb it through channels in the . It is already known that high levels of zinc between are linked with diseases such as Alzheimer's and Parkinson's.

Professor Nigel Hooper from the University's Faculty of explains: "With ageing, the level of prion protein in our brains falls and less zinc is absorbed by brain cells, which could explain why our memory and learning capabilities change as we get older. By studying both their roles in the body, we hope to uncover exactly how prion and zinc affect memory and learning. This could help us better understand how to maintain healthy brain cells and limit the effects of ageing on the brain."

Whilst the abnormal infectious form of prion - which causes Creutzfeldt-Jakob disease (CJD) in humans and (BSE) in cattle - has been extensively studied, the Leeds team is among the first to investigate the role of the 'normal' form of the protein.

Lead researcher, Dr Nicole Watts, says: "Zinc is thought to aid signalling in the brain as it's released into the space between brain cells. However, when there's too much zinc between the brain cells it can become toxic. High levels of zinc in this area between the cells are known to be a factor in neurodegenerative diseases, so regulating the amount of absorption by the cells is crucial."

The research, funded by the Medical Research Council, Wellcome Trust and Alzheimer's Research UK, may have implications for how we treat – and possibly prevent – in the future.

Dr Simon Ridley, Head of Research at Alzheimer's Research UK, said: "We're pleased to have helped support this study, which has uncovered new information that could one day aid the development of new treatments for Alzheimer's. One next step would be to understand how regulating zinc levels may affect the progress of the disease. Results like these have the potential to lead to new and effective treatments – but for that to happen, we must build on these results and continue investing in research."

Explore further: Alzheimer's might be transmissible in similar way as infectious prion diseases: study

More information: Prion protein facilitates uptake of zinc into neuronal cells, Nicole T. Watt, David R. Taylor, Talitha L. Kerrigan, Heledd H. Griffiths, Jo V. Rushworth, Isobel J. Whitehouse, and Nigel M. Hooper, Nature Communications, DOI: 10.1038/ncomms2135

Related Stories

Recommended for you

Ketamine lifts depression via a byproduct of its metabolism

May 4, 2016

A chemical byproduct, or metabolite, created as the body breaks down ketamine likely holds the secret to its rapid antidepressant action, National Institutes of Health (NIH) scientists and grantees have discovered. This metabolite ...

High-fat diet starves the brain

April 29, 2016

A high-fat diet of three days in mice leads to a reduction in the amount of glucose that reaches the brain. This finding was reported by a Research Group led by Jens Brüning, Director at the Max Planck Institute for Metabolism ...

A vitamin that stops the aging process of organs

April 28, 2016

Nicotinamide riboside (NR) is pretty amazing. It has already been shown in several studies to be effective in boosting metabolism. And now a team of researchers at EPFL's Laboratory of Integrated Systems Physiology (LISP), ...

Lifestyle has a strong impact on intestinal bacteria

April 28, 2016

Everything you eat or drink affects your intestinal bacteria, and is likely to have an impact on your health. That is the finding of a large-scale study led by RUG/UMCG geneticist Cisca Wijmenga into the effect of food and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.