RNA-based therapy brings new hope for an incurable blood cancer

RNA-based therapy brings new hope for an incurable blood cancer

Three thousand new cases of Mantle Cell Lymphoma (MCL), a form of blood cancer, appear in the United States each year. With a median survival span of only five to seven years, according to the Leukemia and Lymphoma Society, this disease is devastating, and new therapies are sorely needed.

One of the characteristics that defines MCL is heightened activity in the gene CCND1, which leads to the aggressive over-production of Cyclin D1, a protein that controls the proliferation of , explains Prof. Dan Peer of Tel Aviv University's Department of Cell Research and Immunology. In this disease, Cyclin D1 production spins out of control, producing a 3,000 to 5,000 fold increase.

Now, in an between academia and industry, Prof. Peer has developed a new class of drugs based on RNA interference, which can repair or destroy faulty proteins and reprogram cells to act in normal ways. The drugs have the ability to kill off the mutated protein and stop the over-proliferation of cells. Their method, proven in experiments with and published in the journal , was generously supported by the Lewis Trust and the Israeli Science Foundation.

Academia and industry work for a cure

In the past, scientists have attempted and failed to knock out this protein in the quest to develop a cure for MCL. But despite the prevalent belief that Cyclin D1 is not an effective target for therapies, Prof. Peer and his fellow researchers, including his PhD student Shiri Weinstein and Dr. Rafi Emmanuel and the Sheba Medical Center's Prof. Arnon Nagler and Dr. Avigdor Abraham, knew there was cause for hope.

To prove their theory that Cyclin D1 was indeed an appropriate target for the treatment of MCL, the researchers turned to two companies considered world-experts in RNA, Alnylam Pharmaceuticals in Cambridge, Massachusetts and Integrated DNA Technologies in Iowa, both of which donated their time and resources to the project. Working in parallel, they were able to design potent RNA interference sequences to stop the production of Cyclin D1.

In MCL, Cyclin D1 is the exclusive cause of the over-production of B Lymphocytes, cells responsible for generating antibodies, explains Prof. Peer. This makes the protein a perfect target for RNA interference – because normal, healthy cells don't express the gene, therapies that destroy the gene will only attack cancer cells. The RNA interference that the researchers have developed targets the faulty Cyclin D1 within the cancerous cells. And when the cells are inhibited from proliferating, they sense they are being targeted and begin to "commit suicide," he says.

In the lab, the researchers have successfully used their in human cells, a crucial step towards proving that Cyclin D1 can be targeted through the right interventions. "Ultimately, we want to be able to cure this disease, and I think we are on the way," says Prof. Peer. He hopes that their results might cause scientists to reconsider previous and unproductive results on the effectiveness of treating MCL by addressing aberrations of this protein.

Pairing with nano-delivery methods

The researchers are working to develop a mouse population with MCL to test their newly-developed therapies in vivo. Typically, new therapies for any disease are tested on human cells as well as mouse models in the lab before being taken to clinical trials in humans. But there has never before been a test using mice with this disease, says Prof. Peer, a deficiency that has limited the quality of research. The animal test will allow researchers to conduct a more cautious and in-depth investigation of this new class of drugs before moving to the clinical stage.

As for strategies for delivering the new therapy into the body, the researchers will make use of Prof. Peer's extensive work with nano-sized medical "submarines" which are designed to travel to the source of disease or disorder in the human body, and offload drugs inside specific cells or proteins as needed.

Related Stories

Cancer protein discovery may aid radiation therapy

Jun 09, 2011

Scientists at Dana-Farber Cancer Institute have uncovered a new role for a key cancer protein, a finding that could pave the way for more-effective radiation treatment of a variety of tumors.

Therapy may block expansion of breast cancer cells

Nov 05, 2008

Breast cancer stem cells are known to be involved in therapy resistance and the recurrence of cancerous tumors. A new study appearing in Clinical and Translational Science shows the mechanisms governing stem cell expansion in bre ...

Researchers identify natural tumor suppressor

Sep 09, 2008

Researchers from the University of Pennsylvania School of Medicine have identified a key step in the formation – and suppression – of esophageal cancers and perhaps carcinomas of the breast, head, and neck. By studying ...

Recommended for you

Pepper and halt: Spicy chemical may inhibit gut tumors

3 hours ago

Researchers at the University of California, San Diego School of Medicine report that dietary capsaicin – the active ingredient in chili peppers – produces chronic activation of a receptor on cells lining ...

Expressive writing may help breast cancer survivors

5 hours ago

Writing down fears, emotions and the benefits of a cancer diagnosis may improve health outcomes for Asian-American breast cancer survivors, according to a study conducted by a researcher at the University of Houston (UH).

Taking the guesswork out of cancer therapy

10 hours ago

Researchers and doctors at the Institute of Bioengineering and Nanotechnology (IBN), Singapore General Hospital (SGH) and National Cancer Centre Singapore (NCCS) have co-developed the first molecular test ...

Brain tumour cells found circulating in blood

11 hours ago

(Medical Xpress)—German scientists have discovered rogue brain tumour cells in patient blood samples, challenging the idea that this type of cancer doesn't generally spread beyond the brain.

International charge on new radiation treatment for cancer

12 hours ago

(Medical Xpress)—Imagine a targeted radiation therapy for cancer that could pinpoint and blast away tumors more effectively than traditional methods, with fewer side effects and less damage to surrounding tissues and organs.

User comments