Scientists target bacterial transfer of resistance genes

Researchers report they have found a way to disrupt the spread of antibiotic-resistance genes among S. pneumoniae bacteria, which can contribute to pneumonia (pictured), meningitis and other dangerous ailments. Credit: US Centers for Disease Control and Prevention

The bacterium Streptococcus pneumoniae – which can cause pneumonia, meningitis, bacteremia and sepsis – likes to share its antibiotic-defeating weaponry with its neighbors. Individual cells can pass resistance genes to one another through a process called horizontal gene transfer, or by "transformation," the uptake of DNA from the environment.

Now researchers report that they can interrupt the cascade of cellular events that allows S. pneumoniae to swap or suck up DNA. The new findings, reported in the journal , advance the effort to develop a reliable method for shutting down the spread of in bacteria.

"Within the last few decades, S. pneumoniae has developed resistance to several classes of antibiotics," said University of Illinois pathobiology professor Gee Lau, who led the study. "Importantly, it has been shown that antibiotic stress – the use of antibiotics to treat an infection – can actually induce the transfer of among S. pneumoniae. Our approach inhibits resistance gene transfer in all strains of S. pneumoniae, and does so without increasing selective pressure and without increasing the likelihood that resistant strains will become dominant."

Lau and his colleagues focused on blocking a protein that, when it binds to a receptor in the bacterial , spurs a series of events in the cell that makes the bacterium "competent" to receive new genetic material. The researchers hypothesized that interfering with this protein (called CSP) would hinder its ability to promote gene transfer.

In previous work published late last year in the journal , Lau's team identified proteins that could be made in the lab that were structurally very similar to the CSP proteins. These artificial CSPs can dock with the membrane receptors, block the bacterial CSPs' access to the receptors and reduce bacterial competence, as well as reducing the infectious capacity of S. pneumoniae.

In the new study, the researchers fine-tuned the amino acid structure of more than a dozen artificial CSPs and tested how well they inhibited the S. pneumoniae CSPs. They also tested their ability (or, more desirably, their inability) to mimic the activity of CSPs in bacterial cells.

"The chemical properties of individual amino acids in a protein can greatly influence the protein's activity," Lau said.

The team identified several artificial CSPs that both inhibited the bacterial CSPs and reduced S. pneumoniae competence by more than 90 percent.

"This strategy will likely help us reduce the spread of antibiotic-resistance genes among S. pneumoniae and perhaps other species of streptococcus bacteria," Lau said.

add to favorites email to friend print save as pdf

Related Stories

A new strategy for developing meningitis vaccines

May 24, 2012

Bacterial meningitis is an infection of the meninges, the protective membrane that covers the spinal cord and brain. Children, elderly patients and immunocompromised patients are at a higher risk for the development of severe ...

Flu helps spread pneumonia

Apr 11, 2011

Bacteria that cause pneumonia and meningitis are only able to spread when individuals are infected with flu, says a scientist reporting at the Society for General Microbiology's Spring Conference in Harrogate. The work could ...

UVic Biochemist Stares Down Superbug

Dec 03, 2007

University of Victoria biochemist Dr. Alisdair Boraston has discovered something new about a nasty superbug—a discovery that could lead to new drugs to combat it.

Bacterial 'sex' causes antibiotic resistance

Jun 11, 2009

Some disease-causing bacteria are becoming resistant to antibiotics because they have peculiar sex lives, say researchers publishing new results today in the journal Science. The new study helps scientists understand how ba ...

Recommended for you

Student seeks to improve pneumonia vaccines

Aug 20, 2014

Almost a million Americans fall ill with pneumonia each year. Nearly half of these cases require hospitalization, and 5-7 percent are fatal. Current vaccines provide protection against some strains of the ...

Seabed solution for cold sores

Aug 20, 2014

The blue blood of abalone, a seabed delicacy could be used to combat common cold sores and related herpes virus following breakthrough research at the University of Sydney.

Better living through mitochondrial derived vesicles

Aug 19, 2014

(Medical Xpress)—As principal transformers of bacteria, organelles, synapses, and cells, vesicles might be said to be the stuff of life. One need look no further than the rapid rise to prominence of The ...

Zebrafish help to unravel Alzheimer's disease

Aug 19, 2014

New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at ...

User comments