Scientists discover gene behind rare disorders

Scientists at the Montreal Neurological Institute and Hospital – The Neuro, McGill University working with a team at Oxford University have uncovered the genetic defect underlying a group of rare genetic disorders.

Using a new technique that has revolutionized genetic studies, the teams determined that mutations in the RMND1 gene were responsible for severe neurodegenerative disorders, in two infants, ultimately leading to their early death. Although the teams' investigations dealt with an infant, their discovery also has implications for understanding the causes of later-onset .

The RMND1 gene encodes a protein that is an important component of the machinery in mitochondria which generates the that all cells need to function. Mutations in genes affecting mitochondrial function are common causes of neurological and neuromuscular disorders in adults and children. It is estimated that one newborn baby out of 5000 is at risk for developing one of these disorders. Mortality among such cases is very high.

"Mitochondria are becoming a focus of research because it's clear they're involved in neurodegenerative disorders in a fairly big way," says Dr. Eric Shoubridge, an internationally recognized specialist on at The Neuro and lead author of the paper published in The . "For instance, we're finding that dysfunctional mitochondria may be at the heart of adult-onset disorders like Parkinson's and Alzheimer's disease."

Discovery of the mutations in the RMND1 gene involved using whole-exome sequencing at the McGill University and Genome Québec Innovation Centre. This technique allows all of the genes in the body that code for proteins to be sequenced and analyzed in a single experiment. At a cost of about $1000, whole-exome sequencing is much more economical than previous techniques in which lists of had to be screened in the search for mutations. The technique is poised to change the face of genetic diagnosis, making testing more efficient and available.

"Parents who have had a child with a mitochondrial disorder and who are hesitating to have another child now have the possibility to know the cause of the disease. With genetic information, they have reproductive options like in vitro fertilization," says Dr. Shoubridge. The discovery of the RMND1 gene's role sheds light on disorders of mitochondrial energy metabolism, but therapies to alleviate or cure such disorders remain elusive. Dr. Shoubridge is hopeful that the discovery will encourage pharmaceutical interest. "Drug companies are starting to be interested in rare diseases and metabolic disorders like this. They're picking some genes as potential drug candidates."

Related Stories

Discovery of genetic mutation in Leigh syndrome

Aug 11, 2009

Researchers at the Montreal Neurological Institute and Hospital (The Neuro), McGill University have discovered a genetic mutation underlying late-onset Leigh syndrome, a rare inherited metabolic disorder characterized by ...

Kids with autism may have gene that causes muscle weakness

Apr 13, 2008

Some kids with autism may have a genetic defect that affects the muscles, according to research that will be presented at the American Academy of Neurology 60th Anniversary Annual Meeting in Chicago, April 12–19, 2008.

Genetic map reveals clues to degenerative diseases

Aug 24, 2011

An international research team, spearheaded by Dr. Tim Mercer from The University of Queensland's Institute for Molecular Bioscience (IMB), has unlocked the blueprints to the ‘power plants' of the cell in an effort that ...

Quick and easy diagnosis for mitochondrial disorders

Oct 22, 2009

Soon you could be genetically screened for mitochondrial disorders quickly and comprehensively. Research published in BioMed Central's open access journal, Genome Medicine, outlines an innovative clinical diagnostic test f ...

Recommended for you

User comments