Scientists have discovered how mosquitoes develop viral immunity

Close-up of a Culex pipiens mosquito, which can transmit viruses such as West Nile and Murray Valley encephalitis.

(Medical Xpress)—Published online in the prestigious Proceedings of the National Academy of Sciences (PNAS), the team from CSIRO's Australian Animal Health Laboratory, in Geelong, have shown Vago, a protein previously identified in fruit flies, is released by infected mosquito cells, providing a warning to other cells to defend against the invading virus.

Mosquito-transmitted emerging viruses, such as dengue, Japanese encephalitis and West Nile threaten the health of our people, livestock and wildlife. Globally, dengue infects 50-100 million people and results in around 22,000 deaths annually.

According to CSIRO's Professor Peter Walker, these insect vectors present a particular biosecurity risk for Australia as they are rapidly spreading into new areas driven by a number of factors including and increased travel and trade.

"Difficulties in generating safe and effective vaccines for many of these pathogens present significant challenges due to their complex ecology and the range of hosts the viruses can infect," Professor Walker said.

This video is not supported by your browser at this time.
CSIRO’s Professor Peter Walker discusses the global biosecurity threat mosquito-borne viruses, such as dengue, pose to human health.

"Until now, very little was known about the defensive anti-viral response of insects. Unlike humans and other mammals, insects lack key components of the immune response including antibodies, T-cells and many important cytokines, such as interferon."

Using as their infection model, the research team has demonstrated that, although unrelated structurally, Vago acts in mosquitoes like human interferon.

"Mosquito cells can sense the presence of a virus by detecting its small genome, stimulating the secretion of Vago. The secreted Vago then binds to receptors on other cells, signalling an anti-viral defensive response to limit the infection," Professor Walker said.

"This is the first demonstration that such a mechanism exists in mosquitoes or any other invertebrate.

"We are now looking at how viruses such as West Nile and dengue overcome the of the mosquito and how we can use this knowledge to increase resistance to infection and decrease the efficiency of disease transmission."

CSIRO will also use this new knowledge to explore the use of Vago for the control of viruses in invertebrate aquaculture species including prawns and abalone.

Related Stories

Researchers identify new cell that attacks dengue virus

May 16, 2011

Mast cells, which can help the body respond to bacteria and pathogens, also apparently sound the alarm around viruses delivered by a mosquito bite, according to researchers at Duke-NUS Graduate Medical School in Singapore.

Recommended for you

Senegal monitors contacts of 1st Ebola patient

3 hours ago

Senegalese authorities on Monday were monitoring everyone who was in contact with a student infected with Ebola who crossed into the country, and who has lost three family members to the disease.

Cerebral palsy may be hereditary

9 hours ago

Cerebral palsy is a neurological developmental disorder which follows an injury to the immature brain before, during or after birth. The resulting condition affects the child's ability to move and in some ...

19 new dengue cases in Japan, linked to Tokyo park

15 hours ago

Japan is urging local authorities to be on the lookout for further outbreaks of dengue fever, after confirming another 19 cases that were contracted at a popular local park in downtown Tokyo.

User comments