Sphere-templated tissue scaffold is a viable subcutaneous implant

Sphere-templated tissue scaffold is a viable subcutaneous implant
Compared with high-density porous polyethylene implant materials, sphere-templated poly (2-hydroxyethyl methacrylate) tissue scaffold stimulates a minimal inflammatory response; supports cellular ingrowth, collagen formation, and neovascularization; and may induce less scar formation, according to an experimental study published online Oct. 8 in the Archives of Facial Plastic Surgery.

(HealthDay)—Compared with high-density porous polyethylene (HDPPE) implant materials, sphere-templated poly (2-hydroxyethyl methacrylate) (poly[HEMA]) tissue scaffold stimulates a minimal inflammatory response; supports cellular ingrowth, collagen formation, and neovascularization; and may induce less scar formation, according to an experimental study published online Oct. 8 in the Archives of Facial Plastic Surgery.

Amit D. Bhrany, M.D., of the University of Washington in Seattle, and colleagues conducted a study involving the subcutaneous implantation of poly(HEMA) and HDPPE disks into the dorsal subcutis of C57BL/6 mice to evaluate their use as .

The researchers found that poly(HEMA) and HDPPE implants resisted extrusion, elicited a minimal inflammatory response, and supported neovascularization. While cellular and collagen ingrowth occurred in both implants, collagen ingrowth was thicker in the HDPPE implant due to the larger porous structure, while poly(HEMA) had much thinner within smaller pores. Within the fibrous ingrowth of the HDPPE and individuals pores of poly(HEMA), blood vessels were observed.

"In conclusion, this study serves as a foundation demonstrating that, as a subcutaneous implant, the sphere-template poly(HEMA) tissue scaffold exhibits good biocompatibility and supports cellular infiltration, collagen formation, and neovascularization," the authors write. "Because of its tightly controlled porous structure, the sphere-templated poly(HEMA) implant also may induce less scar-type healing response than the HDPPE implant."

One author disclosed to Healionics, which has licensed the sphere-templated scaffold technology from the University of Washington.

More information: Abstract
Full Text (subscription or payment may be required)

Related Stories

Recommended for you

School scoliosis screening has sustained effectiveness

date May 22, 2015

(HealthDay)—School scoliosis screening can have sustained clinical effectiveness in identifying patients with adolescent idiopathic scoliosis, according to a study published in the May 1 issue of The Sp ...

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.