Superbugs spread through the air in hospital wards

October 11, 2012

(Medical Xpress)—Hospital superbugs can float on air currents and contaminate surfaces far from infected patients' beds, according to University of Leeds researchers.

The results of the study, which was funded by the Engineering and Physical Sciences Research Council (EPSRC), may explain why, despite strict cleaning regimes and hygiene controls, some hospitals still struggle to prevent bacteria moving from patient to patient.

It is already recognised that hospital , such as and C-difficile, can be spread through contact. Patients, visitors or even can inadvertently touch surfaces contaminated with bacteria and then pass the infection on to others, resulting in a great stress in hospitals on keeping hands and surfaces clean.

But the University of Leeds research showed that coughing, sneezing or simply shaking the bedclothes can send superbugs into flight, allowing them to contaminate recently-cleaned surfaces.

PhD student Marco-Felipe King used a biological chamber, one of a handful in the world, to replicate conditions in one- and two-bedded hospital rooms. He released tiny aerosol containing Staphyloccus aureus, a bacteria related to MRSA, from a heated mannequin simulating the heat emitted by a human body. He placed open where other patients' beds, bedside tables, chairs and washbasins might be and then checked where the bacteria landed and grew.

The results confirmed that contamination can spread to surfaces across a ward. "The level of contamination immediately around the patient's bed was high but you would expect that. Hospitals keep beds clean and disinfect the tables and surfaces next to beds," said Dr Cath Noakes, from the University's School of Civil Engineering, who supervised the work. "However, we also captured significant quantities of bacteria right across the room, up to 3.5 metres away and especially along the route of the airflows in the room."

"We now need to find out whether this airborne dispersion is an important route of spreading infection," added co-supervisor Dr Andy Sleigh.

The researchers are hoping that computer modelling will help them determine the risk. The findings have been compared to airflow simulations of the mock-up hospital rooms and the research team have shown that they are able to accurately predict how airborne particles can be deposited on surfaces.

"Using our understanding of airflow dynamics, we can now use these models to investigate how different ward layouts and different positions of windows, doors and air vents could help prevent microorganisms being deposited on accessible surfaces," said Mr King.

The international design and engineering firm Arup, which designs hospitals, part sponsored the study.

Phil Nedin, director and global healthcare business leader at Arup, said: "We are looking at healthcare facilities of the future and it is important that we look at key issues such as infection control. Being involved in microbiological studies that inform airflow modelling in potentially infectious environments allows us to get a clear understanding of the risks in these particular environments."

The paper "Bioaerosol Deposition in Single and Two-Bed Hospital Rooms: A Numerical and Experimental Study" is published in the journal Building and Environment.

More information: M.F. King, C.J. Noakes, P.A. Sleigh, M.A. Camargo-Valero, 'Bioaerosol Deposition in Single and Two-Bed Hospital Rooms: A Numerical and Experimental Study' Building and Environment (2012). DOI 10.1016/j.buildenv.2012.09.011

Related Stories

Copper reduces infection risk by more than 40 percent

July 1, 2011

Professor Bill Keevil, Head of the Microbiology Group and Director of the Environmental Healthcare Unit at the University of Southampton, has presented research into the mechanism by which copper exerts its antimicrobial ...

Recommended for you

Experimental MERS vaccine shows promise in animal studies

July 28, 2015

A two-step regimen of experimental vaccines against Middle East respiratory syndrome (MERS) prompted immune responses in mice and rhesus macaques, report National Institutes of Health scientists who designed the vaccines. ...

Can social isolation fuel epidemics?

July 21, 2015

Conventional wisdom has it that the more people stay within their own social groups and avoid others, the less likely it is small disease outbreaks turn into full-blown epidemics. But the conventional wisdom is wrong, according ...

Lack of knowledge on animal disease leaves humans at risk

July 20, 2015

Researchers from the University of Sydney have painted the most detailed picture to date of major infectious diseases shared between wildlife and livestock, and found a huge gap in knowledge about diseases which could spread ...

IBD genetically similar in Europeans and non-Europeans

July 20, 2015

The first genetic study of inflammatory bowel disease (IBD) to include individuals from diverse populations has shown that the regions of the genome underlying the disease are consistent around the world. This study, conducted ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.