Unique protein bond enables learning and memory

October 30, 2012

Two proteins have a unique bond that enables brain receptors essential to learning and memory to not only get and stay where they're needed, but to be hauled off when they aren't, researchers say.

NMDA receptors increase the activity and communication of and are strategically placed, much like a welcome center, at the receiving end of the communication highway connecting two cells. They also are targets in brain-degenerating conditions such as Alzheimer's and Parkinson's.

In a true cradle-to-grave relationship, researchers have found the scaffolding protein, SAP102, which helps stabilize the receptor on the cell surface, binds with a subunit of the called GluN2B at two sites, said Dr. Bo-Shiun Chen, neuroscientist at the Medical College of Georgia at Georgia Health Sciences University.

While one binding site is the norm, these proteins have one that's stronger than the other. When it's time for the normal receptor turnover, the stronger bond releases and the lesser one shuttles the receptor inside the cell for degradation or recycling.

"One binding site is involved in stabilizing the receptor on the cell surface and the other is important in removing the receptor. We think it's a paradigm shift; we've never thought about the same scaffolding protein having two roles," said Chen, corresponding author of the study in the journal Cell Reports.

"We believe by understanding the normal turnover of these receptors, we can learn more about how to prevent the abnormal receptor loss that occurs in debilitating diseases such as Alzheimer's." In Parkinson's, the receptors inexplicably move away from where the synapse, or information highway, connects to the neuron, making them less effective. NMDA receptors are supposed to cluster where the synapse hooks into the receiving neuron; in fact, it's part of what anchors the synapse, Chen said.

Interestingly, this pivotal protein, SAP102, a member of the MAGUK family of scaffolding proteins, is the only family member known to directly contribute to maladies: its mutation causes intellectual disability.

While all cells have a system for managing the number of receptors on their surface, in Alzheimer's, this removal process appears accelerated, with increased engulfing of receptors and less neuron-to-neuron communication. The neurotransmitter glutamate helps establish and maintain the synapse and also binds with GluN2B.

GluN2B-containing NMDA receptors stay open to receive information for a long time, enabling the type of vigorous and sustained communication that enables learning and memory. In fact the number of these naturally decreases with age, which may be one reason young people learn easier. When it's time to remove a receptor, phosphorus gets added to GluN2B, changing its function so it no longer binds to the .

Explore further: New drug target for Alzheimer's, stroke discovered

Related Stories

New drug target for Alzheimer's, stroke discovered

October 11, 2011

A tiny piece of a critical receptor that fuels the brain and without which sentient beings cannot live has been discovered by University at Buffalo scientists as a promising new drug target for Alzheimer's and other neurodegenerative ...

Recommended for you

Artificial beta cells

December 8, 2016

Researchers led by ETH Professor Martin Fussenegger at the Department of Biosystems Science and Engineering (D-BSSE) in Basel have produced artificial beta cells using a straightforward engineering approach.

Key regulator of bone development identified

December 8, 2016

Loss of a key protein leads to defects in skeletal development including reduced bone density and a shortening of the fingers and toes—a condition known as brachydactyly. The discovery was made by researchers at Penn State ...

Researchers question lifelong immunity to toxoplasmosis

December 8, 2016

Medical students are taught that once infected with Toxoplasma gondii—the "cat parasite"—then you're protected from reinfection for the rest of your life. This dogma should be questioned, argue researchers in an Opinion ...

TET proteins drive early neurogenesis

December 7, 2016

The fate of stem cells is determined by series of choices that sequentially narrow their available options until stem cells' offspring have found their station and purpose in the body. Their decisions are guided in part by ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.