Researchers create a universal map of vision in the human brain

October 4, 2012
Credit: University of Pennsylvania School of Medicine

Nearly 100 years after a British neurologist first mapped the blind spots caused by missile wounds to the brains of soldiers, Perelman School of Medicine researchers at the University of Pennsylvania have perfected his map using modern-day technology. Their results create a map of vision in the brain based upon an individual's brain structure, even for people who cannot see. Their result can, among other things, guide efforts to restore vision using a neural prosthesis that stimulates the surface of the brain. The study appears in the latest issue of Current Biology.

Scientists frequently use a brain imaging technique called functional MRI (fMRI) to measure the seemingly unique activation map of vision on an individual's brain. This fMRI test requires staring at a flashing screen for many minutes while is measured, which is an impossibility for people blinded by eye disease. The Penn team has solved this problem by finding a common across people of the relationship between visual function and .

"By measuring brain anatomy and applying an algorithm, we can now accurately predict how the visual world for an individual should be arranged on the surface of the brain," said senior author Geoffrey Aguirre, MD, PhD, assistant professor of Neurology. "We are already using this advance to study how vision loss changes the organization of the brain."

The researchers combined traditional fMRI measures of brain activity from 25 people with normal vision. They then identified a precise statistical relationship between the structure of the folds of the brain and the representation of the visual world.

"At first, it seems like the visual area of the brain has a different shape and size in every person," said co-lead author Noah Benson, PhD, post-doctoral researcher in Psychology and Neurology. "Building upon prior studies of regularities in brain anatomy, we found that these individual differences go away when examined with our mathematical template."

A World War I neurologist, Gordon Holmes, is generally credited with creating the first schematic of this relationship. "He produced a remarkably accurate map in 1918 with only the crudest of techniques," said co-lead author Omar Butt, MD/PhD candidate in the Perelman School of Medicine at Penn. "We have now locked down the details, but it's taken 100 years and a lot of technology to get it right."

The research was funded by grants from Pennsylvania State CURE fund and the National Institutes of Health (P30 EY001583, P30 NS045839-08, R01 EY020516-01A1).

Explore further: New study examines brain processes behind facial recognition

More information: NC Benson, et al., The Retinotopic Organization of Striate Cortex Is Well Predicted by Surface Topology, Current Biology (2012).

Related Stories

Neuroscientists unlock shared brain codes

October 20, 2011

A team of neuroscientists at Dartmouth College has shown that different individuals' brains use the same, common neural code to recognize complex visual images.

Recommended for you

New insights on how cocaine changes the brain

November 25, 2015

The burst of energy and hyperactivity that comes with a cocaine high is a rather accurate reflection of what's going on in the brain of its users, finds a study published November 25 in Cell Reports. Through experiments conducted ...

Can physical exercise enhance long-term memory?

November 25, 2015

Exercise can enhance the development of new brain cells in the adult brain, a process called adult neurogenesis. These newborn brain cells play an important role in learning and memory. A new study has determined that mice ...

Umbilical cells help eye's neurons connect

November 24, 2015

Cells isolated from human umbilical cord tissue have been shown to produce molecules that help retinal neurons from the eyes of rats grow, connect and survive, according to Duke University researchers working with Janssen ...

Brain connections predict how well you can pay attention

November 24, 2015

During a 1959 television appearance, Jack Kerouac was asked how long it took him to write his novel On The Road. His response – three weeks – amazed the interviewer and ignited an enduring myth that the book was composed ...

No cable spaghetti in the brain

November 24, 2015

Our brain is a mysterious machine. Billions of nerve cells are connected such that they store information as efficiently as books are stored in a well-organized library. To this date, many details remain unclear, for instance ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.